IDEAS home Printed from https://ideas.repec.org/a/spr/gjofsm/v18y2017i1d10.1007_s40171-016-0147-z.html
   My bibliography  Save this article

An Empirical Analysis on Comparing Market Share with Concerns on Companies Measured Through Search Engine Suggests

Author

Listed:
  • Takehito Utsuro

    (University of Tsukuba)

  • Chen Zhao

    (University of Tsukuba)

  • Linghan Xu

    (University of Tsukuba)

  • Jiaqi Li

    (University of Tsukuba)

  • Yasuhide Kawada

    (Logworks Co., Ltd.)

Abstract

In this study, we present a method of predicting market share values using search engine data. Given a product-specific domain, we compare the rates of Web searches for different companies supplying similar products and consider them as concerns of those who search for Web pages. In the proposed method, concerns of those who search for Web pages are measured through search engine suggests. We then analyze whether rates of concerns of those who search for Web pages are correlated with the actual market shares. Next, we examine the page view statistics at the kakaku.com site as intermediate statistics and determine their correlation with the rates of concerns of those who search for Web pages and the market shares. The results of the analysis indicate significant correlation. Furthermore, we conduct an empirical study on determining the optimal correlation between the rates of concerns of those who search for Web pages and the market shares, as well as that between the rates of concerns of those who search for Web pages and the page view statistics at the kakaku.com site.

Suggested Citation

  • Takehito Utsuro & Chen Zhao & Linghan Xu & Jiaqi Li & Yasuhide Kawada, 2017. "An Empirical Analysis on Comparing Market Share with Concerns on Companies Measured Through Search Engine Suggests," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(1), pages 3-19, March.
  • Handle: RePEc:spr:gjofsm:v:18:y:2017:i:1:d:10.1007_s40171-016-0147-z
    DOI: 10.1007/s40171-016-0147-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40171-016-0147-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40171-016-0147-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    2. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    2. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    3. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    4. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    5. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    6. Daniel E. O'Leary, 2024. "Toward an extended framework of exhaust data for predictive analytics: An empirical approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    7. Aksoy, Cevat Giray & Ganslmeier, Michael & Poutvaara, Panu, 2020. "Public Attention and Policy Responses to COVID-19 Pandemic," IZA Discussion Papers 13427, Institute of Labor Economics (IZA).
    8. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    9. Breithaupt, Patrick & Kesler, Reinhold & Niebel, Thomas & Rammer, Christian, 2020. "Intangible capital indicators based on web scraping of social media," ZEW Discussion Papers 20-046, ZEW - Leibniz Centre for European Economic Research.
    10. JooSeok Oh & Timothy Paul Connerton & Hyun-Jung Kim, 2019. "The Rediscovery of Brand Experience Dimensions with Big Data Analysis: Building for a Sustainable Brand," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    11. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    12. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    13. Kristina Gligorić & Arnaud Chiolero & Emre Kıcıman & Ryen W. White & Robert West, 2022. "Population-scale dietary interests during the COVID-19 pandemic," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    15. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    16. Jingwen Liu & Peng Zou & Yu Ma, 2022. "The Effect of Air Pollution on Food Preferences," Journal of the Academy of Marketing Science, Springer, vol. 50(2), pages 410-423, March.
    17. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
    18. Qian Chen & Xiang Gao & Jianming Mo & Zhouling Xu, 2022. "Market Reaction to Local Attention around Earnings Announcements in China: Evidence from Internet Search Activity," IJFS, MDPI, vol. 10(4), pages 1-26, October.
    19. Corey Lang & John David Ryder, 2016. "The effect of tropical cyclones on climate change engagement," Climatic Change, Springer, vol. 135(3), pages 625-638, April.
    20. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:gjofsm:v:18:y:2017:i:1:d:10.1007_s40171-016-0147-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.