IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v5y2013i3d10.1007_s12543-013-0144-2.html
   My bibliography  Save this article

Extracting interpretable fuzzy models for nonlinear systems using gradient-based continuous ant colony optimization

Author

Listed:
  • M. Eftekhari

    (Shahid Bahonar University of Kerman)

  • M. Zeinalkhani

    (Shahid Bahonar University of Kerman)

Abstract

This paper exploits the ability of a novel ant colony optimization algorithm called gradient-based continuous ant colony optimization, an evolutionary methodology, to extract interpretable first-order fuzzy Sugeno models for nonlinear system identification. The proposed method considers all objectives of system identification task, namely accuracy, interpretability, compactness and validity conditions. First, an initial structure of model is obtained by means of subtractive clustering. Then, an iterative two-step algorithm is employed to produce a simplified fuzzy model in terms of number of fuzzy sets and rules. In the first step, the parameters of the model are adjusted by utilizing the gradient-based continuous ant colony optimization. In the second step, the similar membership functions of an obtained model merge. The results obtained on three case studies illustrate the applicability of the proposed method to extract accurate and interpretable fuzzy models for nonlinear system identification.

Suggested Citation

  • M. Eftekhari & M. Zeinalkhani, 2013. "Extracting interpretable fuzzy models for nonlinear systems using gradient-based continuous ant colony optimization," Fuzzy Information and Engineering, Springer, vol. 5(3), pages 255-277, September.
  • Handle: RePEc:spr:fuzinf:v:5:y:2013:i:3:d:10.1007_s12543-013-0144-2
    DOI: 10.1007/s12543-013-0144-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-013-0144-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-013-0144-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    2. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    3. Anand Kumar & Manoj Thakur & Garima Mittal, 2018. "A new ants interaction scheme for continuous optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 784-801, August.
    4. Nikolaos Ploskas & Nikolaos V. Sahinidis, 2022. "Review and comparison of algorithms and software for mixed-integer derivative-free optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 433-462, March.
    5. Ozgur Kisi & Armin Azad & Hamed Kashi & Amir Saeedian & Seyed Ali Asghar Hashemi & Salar Ghorbani, 2019. "Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 847-861, January.
    6. Bera, Sasadhar & Mukherjee, Indrajit, 2012. "An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 321-332.
    7. Amjad Hudaib & Mohammad Khanafseh & Ola Surakhi, 2018. "An Improved Version of K-medoid Algorithm using CRO," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 116-116, February.
    8. Liao, Tianjun & Stützle, Thomas & Montes de Oca, Marco A. & Dorigo, Marco, 2014. "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, Elsevier, vol. 234(3), pages 597-609.
    9. Eroğlu, Yunus & Seçkiner, Serap Ulusam, 2012. "Design of wind farm layout using ant colony algorithm," Renewable Energy, Elsevier, vol. 44(C), pages 53-62.
    10. Martin Schlüter & Matthias Gerdts, 2010. "The oracle penalty method," Journal of Global Optimization, Springer, vol. 47(2), pages 293-325, June.
    11. Ali Sardar Shahraki & Mohim Tash & Tommaso Caloiero & Ommolbanin Bazrafshan, 2024. "Optimal Allocation of Water Resources Using Agro-Economic Development and Colony Optimization Algorithm," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    12. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    13. Tiago Maritan Ugulino Araújo & Lisieux Marie M. S. Andrade & Carlos Magno & Lucídio Anjos Formiga Cabral & Roberto Quirino Nascimento & Cláudio N. Meneses, 2016. "DC-GRASP: directing the search on continuous-GRASP," Journal of Heuristics, Springer, vol. 22(4), pages 365-382, August.
    14. Shao, Peng & Liang, Ying & Li, Guangquan & Li, Xing & Yang, Le, 2023. "Birefringence learning: A new global optimization technology model based on birefringence principle in application on artificial bee colony," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 470-486.
    15. Andres Quiros-Granados & JAvier Trejos-Zelaya, 2019. "Estimation of the yield curve for Costa Rica using combinatorial optimization metaheuristics applied to nonlinear regression," Papers 2001.00920, arXiv.org.
    16. Sulaiman, Mohd Herwan & Mustaffa, Zuriani, 2024. "Chiller energy prediction in commercial building: A metaheuristic-Enhanced deep learning approach," Energy, Elsevier, vol. 297(C).
    17. Jelić, Marko & Batić, Marko & Krstić, Aleksandra & Bottarelli, Michele & Mainardi, Elena, 2023. "Comparative analysis of metaheuristic optimization approaches for multisource heat pump operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Qiang Yang & Xu Guo & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu, 2022. "Differential Elite Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(8), pages 1-32, April.
    19. Nantiwat Pholdee & Sujin Bureerat, 2016. "Hybrid real-code ant colony optimisation for constrained mechanical design," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(2), pages 474-491, January.
    20. Saeed Behzadpoor & Iraj Faraji Davoudkhani & Almoataz Youssef Abdelaziz & Zong Woo Geem & Junhee Hong, 2022. "Power System Stability Enhancement Using Robust FACTS-Based Stabilizer Designed by a Hybrid Optimization Algorithm," Energies, MDPI, vol. 15(22), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:5:y:2013:i:3:d:10.1007_s12543-013-0144-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.