IDEAS home Printed from https://ideas.repec.org/a/spr/fobric/v13y2019i1d10.1186_s11782-019-0062-1.html
   My bibliography  Save this article

Helping consumers to overcome information overload with a diversified online review subset

Author

Listed:
  • Zhang Jin

    (Renmin University of China)

  • Weng Zhangwen

    (Renmin University of China)

  • Ni Naichen

    (University of Michigan)

Abstract

Redundant online reviews often have a negative impact on the efficiency of consumers’ decision-making in their online shopping. A feasible solution for business analytics is to select a review subset from the original review corpus for consumers, which is called review selection. This study aims to address the diversified review selection problem, and proposes an effective review selection approach called Simulated Annealing-Diversified Review Selection (SA-DRS) that considers the semantic relationship of review features and the content diversity of selected reviews simultaneously. SA-DRS first constructs a feature taxonomy by utilizing the Latent Dirichlet Allocation (LDA) topic model and the Word2vec model to measure the topic relation and word context relation. Based on the established feature taxonomy, the similarity between each pair of reviews is defined and the review quality is estimated as well. Finally, diversified, high-quality reviews are selected heuristically by SA-DRS in the spirit of the simulated annealing method, forming the selected review subset. Extensive experiments are conducted on real-world e-commerce platforms to demonstrate the effectiveness of SA-DRS compared to other extant review selection approaches.

Suggested Citation

  • Zhang Jin & Weng Zhangwen & Ni Naichen, 2019. "Helping consumers to overcome information overload with a diversified online review subset," Frontiers of Business Research in China, Springer, vol. 13(1), pages 1-25, December.
  • Handle: RePEc:spr:fobric:v:13:y:2019:i:1:d:10.1186_s11782-019-0062-1
    DOI: 10.1186/s11782-019-0062-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s11782-019-0062-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s11782-019-0062-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dhar, Vasant & Chang, Elaine A., 2009. "Does Chatter Matter? The Impact of User-Generated Content on Music Sales," Journal of Interactive Marketing, Elsevier, vol. 23(4), pages 300-307.
    2. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    3. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    4. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    5. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    6. Mantel, Susan Powell & Kellaris, James J, 2003. "Cognitive Determinants of Consumers' Time Perceptions: The Impact of Resources Required and Available," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 29(4), pages 531-538, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2018. "User-Generated Content and Competing Firms’ Product Design," Management Science, INFORMS, vol. 64(10), pages 4608-4628, October.
    2. Yabing Jiang & Hong Guo, 2012. "Design of Consumer Review Systems and Product Pricing," Working Papers 12-10, NET Institute.
    3. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    4. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    5. Dominik Gutt, 2018. "In the Eye of the Beholder? Empirically Decomposing Different Economic Implications of the Online Rating Variance," Working Papers Dissertations 40, Paderborn University, Faculty of Business Administration and Economics.
    6. Zunqiang Zhang & Guoqing Chen & Jin Zhang & Xunhua Guo & Qiang Wei, 2016. "Providing Consistent Opinions from Online Reviews: A Heuristic Stepwise Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 236-250, May.
    7. Kostyra, Daniel S. & Reiner, Jochen & Natter, Martin & Klapper, Daniel, 2016. "Decomposing the effects of online customer reviews on brand, price, and product attributes," International Journal of Research in Marketing, Elsevier, vol. 33(1), pages 11-26.
    8. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2014. "Online Product Reviews: Implications for Retailers and Competing Manufacturers," Information Systems Research, INFORMS, vol. 25(1), pages 93-110, March.
    9. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    10. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    11. Yabing Jiang & Hong Guo, 2015. "Design of Consumer Review Systems and Product Pricing," Information Systems Research, INFORMS, vol. 26(4), pages 714-730, December.
    12. Anning Wang & Qiang Zhang & Shuangyao Zhao & Xiaonong Lu & Zhanglin Peng, 2020. "A review-driven customer preference measurement model for product improvement: sentiment-based importance–performance analysis," Information Systems and e-Business Management, Springer, vol. 18(1), pages 61-88, March.
    13. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    14. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    15. Gensler, Sonja & Völckner, Franziska & Liu-Thompkins, Yuping & Wiertz, Caroline, 2013. "Managing Brands in the Social Media Environment," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 242-256.
    16. Peiyu Chen & Lorin M. Hitt & Yili Hong & Shinyi Wu, 2021. "Measuring Product Type and Purchase Uncertainty with Online Product Ratings: A Theoretical Model and Empirical Application," Information Systems Research, INFORMS, vol. 32(4), pages 1470-1489, December.
    17. Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.
    18. Steffen Zimmermann & Philipp Herrmann & Dennis Kundisch & Barrie R. Nault, 2018. "Decomposing the Variance of Consumer Ratings and the Impact on Price and Demand," Information Systems Research, INFORMS, vol. 29(4), pages 984-1002, December.
    19. Sun, Miao & Chen, Jing & Tian, Ye & Yan, Yufei, 2021. "The impact of online reviews in the presence of customer returns," International Journal of Production Economics, Elsevier, vol. 232(C).
    20. Joe Cox & Daniel Kaimann, 2013. "The Signaling Effect of Critics - Evidence from a Market for Experience Goods," Working Papers CIE 68, Paderborn University, CIE Center for International Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fobric:v:13:y:2019:i:1:d:10.1186_s11782-019-0062-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.