IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v23y2021i1p246-266.html
   My bibliography  Save this article

Online Advance Scheduling with Overtime: A Primal-Dual Approach

Author

Listed:
  • Esmaeil Keyvanshokooh

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48105)

  • Cong Shi

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48105)

  • Mark P. Van Oyen

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48105)

Abstract

Problem definition : We study a fundamental online resource allocation problem in service operations in which a heterogeneous stream of arrivals that varies in service times and rewards makes service requests from a finite number of servers/providers. This is an online adversarial setting in which nothing more is known about the arrival process of customers. Each server has a finite regular capacity but can be expanded at the expense of overtime cost. Upon arrival of each customer, the system chooses both a server and a time for service over a scheduling horizon subject to capacity constraints. The system seeks easy-to-implement online policies that admit a competitive ratio (CR), guaranteeing the worst-case relative performance. Academic/practical relevance : On the academic side, we propose online algorithms with theoretical CRs for the problem described above. On the practical side, we investigate the real-world applicability of our methods and models on appointment-scheduling data from a partner health system. Methodology : We develop new online primal-dual approaches for making not only a server-date allocation decision for each arriving customer, but also an overtime decision for each server on each day within a horizon. We also derive a competitive analysis to prove a theoretical performance guarantee. Results : Our online policies are (i) robust to future information, (ii) easy-to-implement and extremely efficient to compute, and (iii) admitting a theoretical CR. Comparing our online policy with the optimal offline policy, we obtain a CR that guarantees the worst-case performance of our online policy. Managerial implications : We evaluate the performance of our online algorithms by using real appointment scheduling data from a partner health system. Our results show that the proposed online policies perform much better than their theoretical CR, and outperform the pervasive First-Come-First-Served (FCFS) and nested threshold policies (NTPO) by a large margin.

Suggested Citation

  • Esmaeil Keyvanshokooh & Cong Shi & Mark P. Van Oyen, 2021. "Online Advance Scheduling with Overtime: A Primal-Dual Approach," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 246-266, 1-2.
  • Handle: RePEc:inm:ormsom:v:23:y:2021:i:1:p:246-266
    DOI: 10.1287/msom.2019.0832
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/msom.2019.0832
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2019.0832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    2. Niv Buchbinder & Tracy Kimbrel & Retsef Levi & Konstantin Makarychev & Maxim Sviridenko, 2013. "Online Make-to-Order Joint Replenishment Model: Primal-Dual Competitive Algorithms," Operations Research, INFORMS, vol. 61(4), pages 1014-1029, August.
    3. Woonghee Tim Huh & Nan Liu & Van-Anh Truong, 2013. "Multiresource Allocation Scheduling in Dynamic Environments," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 280-291, May.
    4. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    5. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    6. Leslie A. Hall & Andreas S. Schulz & David B. Shmoys & Joel Wein, 1997. "Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 513-544, August.
    7. Yigal Gerchak & Diwakar Gupta & Mordechai Henig, 1996. "Reservation Planning for Elective Surgery Under Uncertain Demand for Emergency Surgery," Management Science, INFORMS, vol. 42(3), pages 321-334, March.
    8. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2006. "Primal-Dual Algorithms for Deterministic Inventory Problems," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 267-284, May.
    9. Nan Liu & Van‐Anh Truong & Xinshang Wang & Brett R. Anderson, 2019. "Integrated Scheduling and Capacity Planning with Considerations for Patients’ Length‐of‐Stays," Production and Operations Management, Production and Operations Management Society, vol. 28(7), pages 1735-1756, July.
    10. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arzum Akkas & Dorothee Honhon, 2023. "Determining maximum shipping age requirements for shelf life and food waste management," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2173-2188, July.
    2. Yuan Shi & Saied Mahdian & Jose Blanchet & Peter Glynn & Andrew Y. Shin & David Scheinker, 2023. "Surgical scheduling via optimization and machine learning with long-tailed data," Health Care Management Science, Springer, vol. 26(4), pages 692-718, December.
    3. Esmaeil Keyvanshokooh & Pooyan Kazemian & Mohammad Fattahi & Mark P. Van Oyen, 2022. "Coordinated and Priority‐Based Surgical Care: An Integrated Distributionally Robust Stochastic Optimization Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1510-1535, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    2. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    3. Jiang, Yangzi & Abouee-Mehrizi, Hossein & Diao, Yuhe, 2020. "Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets," European Journal of Operational Research, Elsevier, vol. 281(3), pages 597-611.
    4. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    5. Xinshang Wang & Van-Anh Truong, 2018. "Multi-Priority Online Scheduling with Cancellations," Operations Research, INFORMS, vol. 66(1), pages 104-122, January.
    6. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    7. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    8. Jingui Xie & Weifen Zhuang & Marcus Ang & Mabel C. Chou & Li Luo & David D. Yao, 2021. "Analytics for Hospital Resource Planning—Two Case Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1863-1885, June.
    9. Clifford Stein & Van-Anh Truong & Xinshang Wang, 2020. "Advance Service Reservations with Heterogeneous Customers," Management Science, INFORMS, vol. 66(7), pages 2929-2950, July.
    10. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    11. Minglong Zhou & Melvyn Sim & Shao‐Wei Lam, 2022. "Advance admission scheduling via resource satisficing," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4002-4020, November.
    12. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    13. Matthias Deceuninck & Stijn Vuyst & Dieter Claeys & Dieter Fiems, 2021. "Appointment games with unobservable and observable schedules," Annals of Operations Research, Springer, vol. 307(1), pages 93-110, December.
    14. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    15. Esmaeil Keyvanshokooh & Pooyan Kazemian & Mohammad Fattahi & Mark P. Van Oyen, 2022. "Coordinated and Priority‐Based Surgical Care: An Integrated Distributionally Robust Stochastic Optimization Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1510-1535, April.
    16. Navid Izady, 2015. "Appointment Capacity Planning in Specialty Clinics: A Queueing Approach," Operations Research, INFORMS, vol. 63(4), pages 916-930, August.
    17. Yongbo Xiao & Yan Zhu, 2016. "Value management of diagnostic equipment with cancelation, no‐show, and emergency patients," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 287-304, June.
    18. Dai, Jiajun & Geng, Na & Xie, Xiaolan, 2021. "Dynamic advance scheduling of outpatient appointments in a moving booking window," European Journal of Operational Research, Elsevier, vol. 292(2), pages 622-632.
    19. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    20. Hans-Jörg Schütz & Rainer Kolisch, 2013. "Capacity allocation for demand of different customer-product-combinations with cancellations, no-shows, and overbooking when there is a sequential delivery of service," Annals of Operations Research, Springer, vol. 206(1), pages 401-423, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:23:y:2021:i:1:p:246-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.