IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v22y2018i4d10.1007_s00780-018-0371-9.html
   My bibliography  Save this article

Weak time-derivatives and no-arbitrage pricing

Author

Listed:
  • Massimo Marinacci

    (Università Bocconi)

  • Federico Severino

    (Università della Svizzera Italiana (USI)
    Università Bocconi)

Abstract

We prove a risk-neutral pricing formula for a large class of semimartingale processes through a novel notion of weak time-differentiability that permits to differentiate adapted processes. In particular, the weak time-derivative isolates drifts of semimartingales and is null for martingales. Weak time-differentiability enables us to characterize no-arbitrage prices as solutions of differential equations, where interest rates play a key role. Finally, we reformulate the eigenvalue problem of Hansen and Scheinkman (Econometrica 77:177–234, 2009) by employing weak time-derivatives.

Suggested Citation

  • Massimo Marinacci & Federico Severino, 2018. "Weak time-derivatives and no-arbitrage pricing," Finance and Stochastics, Springer, vol. 22(4), pages 1007-1036, October.
  • Handle: RePEc:spr:finsto:v:22:y:2018:i:4:d:10.1007_s00780-018-0371-9
    DOI: 10.1007/s00780-018-0371-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-018-0371-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-018-0371-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    4. Lars Peter Hansen & José A. Scheinkman, 2009. "Long-Term Risk: An Operator Approach," Econometrica, Econometric Society, vol. 77(1), pages 177-234, January.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Lars Peter Hansen & John C. Heaton & Nan Li, 2008. "Consumption Strikes Back? Measuring Long-Run Risk," Journal of Political Economy, University of Chicago Press, vol. 116(2), pages 260-302, April.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    9. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    10. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    11. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    12. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    5. Li, Minqiang, 2010. "Asset Pricing - A Brief Review," MPRA Paper 22379, University Library of Munich, Germany.
    6. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    7. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    8. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    9. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    10. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    11. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    14. Eckhard Platen & Renata Rendek, 2012. "The Affine Nature of Aggregate Wealth Dynamics," Research Paper Series 322, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    16. Matthias Berger & Christian Matt & Jochen Gönsch & Thomas Hess, 2019. "Is the Time Ripe? How the Value of Waiting and Incentives Affect Users’ Switching Behaviors for Smart Home Devices," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(1), pages 91-123, February.
    17. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    18. Ourania Theodosiadou & Sotiris Skaperas & George Tsaklidis, 2017. "Change Point Detection and Estimation of the Two-Sided Jumps of Asset Returns Using a Modified Kalman Filter," Risks, MDPI, vol. 5(1), pages 1-14, March.
    19. Cerrato, Mario & Lo, Chia Chun & Skindilias, Konstantinos, 2011. "Adaptive Continuous time Markov Chain Approximation Model to General Jump-Diusions," SIRE Discussion Papers 2011-53, Scottish Institute for Research in Economics (SIRE).
    20. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).

    More about this item

    Keywords

    No-arbitrage pricing; Weak time-derivative; Martingale component; Special semimartingales; Stochastic interest rates;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:22:y:2018:i:4:d:10.1007_s00780-018-0371-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.