IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1512.05983.html
   My bibliography  Save this paper

Approximation of forward curve models in commodity markets with arbitrage-free finite dimensional models

Author

Listed:
  • Fred Espen Benth
  • Paul Kruhner

Abstract

In this paper we show how to approximate a Heath-Jarrow-Morton dynamics for the forward prices in commodity markets with arbitrage-free models which have a finite dimensional state space. Moreover, we recover a closed form representation of the forward price dynamics in the approximation models and derive the rate of convergence uniformly over an interval of time to maturity to the true dynamics under certain additional smoothness conditions. In the Markovian case we can strengthen the convergence to be uniform over time as well. Our results are based on the construction of a convenient Riesz basis on the state space of the term structure dynamics.

Suggested Citation

  • Fred Espen Benth & Paul Kruhner, 2015. "Approximation of forward curve models in commodity markets with arbitrage-free finite dimensional models," Papers 1512.05983, arXiv.org.
  • Handle: RePEc:arx:papers:1512.05983
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1512.05983
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    2. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.
    3. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    4. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    5. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred Espen Benth & Paul Krühner, 2018. "Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models," Finance and Stochastics, Springer, vol. 22(2), pages 327-366, April.
    2. Benth, Fred Espen & Paraschiv, Florentina, 2016. "A Structural Model for Electricity Forward Prices," Working Papers on Finance 1611, University of St. Gallen, School of Finance.
    3. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.
    4. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    7. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    9. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.
    10. Mikael Elhouar, 2008. "Finite-dimensional Realizations of Regime-switching HJM Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 331-354.
    11. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    12. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Jing Yuan & Yan Peng & Zongwu Cai & Zhengyi Zhang, 2021. "A Quantitative Evaluation to Interest Rate Marketization Reform in China," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202122, University of Kansas, Department of Economics.
    14. Fred Espen Benth & Paul Kruhner, 2014. "Derivatives pricing in energy markets: an infinite dimensional approach," Papers 1412.7943, arXiv.org.
    15. Alberto Ohashi & Alexandre B Simas, 2015. "Principal Components Analysis for Semimartingales and Stochastic PDE," Papers 1503.05909, arXiv.org, revised Mar 2016.
    16. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    17. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    18. Tappe, Stefan, 2016. "Affine realizations with affine state processes for stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2062-2091.
    19. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    20. Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1512.05983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.