IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v21y2017i1d10.1007_s00780-016-0316-0.html
   My bibliography  Save this article

Optimal consumption and investment with Epstein–Zin recursive utility

Author

Listed:
  • Holger Kraft

    (Goethe University)

  • Thomas Seiferling

    (University of Kaiserslautern)

  • Frank Thomas Seifried

    (University of Trier)

Abstract

We study continuous-time optimal consumption and investment with Epstein–Zin recursive preferences in incomplete markets. We develop a novel approach that rigorously constructs the solution of the associated Hamilton–Jacobi–Bellman equation by a fixed point argument and makes it possible to compute both the indirect utility and, more importantly, optimal strategies. Based on these results, we also establish a fast and accurate method for numerical computations. Our setting is not restricted to affine asset price dynamics; we only require boundedness of the underlying model coefficients.

Suggested Citation

  • Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
  • Handle: RePEc:spr:finsto:v:21:y:2017:i:1:d:10.1007_s00780-016-0316-0
    DOI: 10.1007/s00780-016-0316-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-016-0316-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-016-0316-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    2. Schroder, Mark & Skiadas, Costis, 2005. "Lifetime consumption-portfolio choice under trading constraints, recursive preferences, and nontradeable income," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 1-30, January.
    3. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    4. Mark Schroder & Costis Skiadas, 2008. "Optimality And State Pricing In Constrained Financial Markets With Recursive Utility Under Continuous And Discontinuous Information," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 199-238, April.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    7. Ma, Jin & Yin, Hong & Zhang, Jianfeng, 2012. "On non-Markovian forward–backward SDEs and backward stochastic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3980-4004.
    8. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Belkacem Berdjane & Serguei Pergamenshchikov, 2013. "Optimal consumption and investment for markets with random coefficients," Finance and Stochastics, Springer, vol. 17(2), pages 419-446, April.
    11. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    12. Campbell, John Y. & Chacko, George & Rodriguez, Jorge & Viceira, Luis M., 2004. "Strategic asset allocation in a continuous-time VAR model," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2195-2214, October.
    13. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    14. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    15. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    16. Holger Kraft & Frank Seifried & Mogens Steffensen, 2013. "Consumption-portfolio optimization with recursive utility in incomplete markets," Finance and Stochastics, Springer, vol. 17(1), pages 161-196, January.
    17. Schroder, Mark & Skiadas, Costis, 2003. "Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 155-202, December.
    18. Antonelli, Fabio, 1996. "Stability of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 103-114, March.
    19. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    20. David M. Kreps & Evan L. Porteus, 2013. "Temporal von Neumann—Morgenstern and Induced Preferences," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 11, pages 181-206, World Scientific Publishing Co. Pte. Ltd..
    21. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    22. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.
    23. Marinacci, Massimo & Montrucchio, Luigi, 2010. "Unique solutions for stochastic recursive utilities," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1776-1804, September.
    24. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    25. Delarue, François, 2002. "On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 209-286, June.
    26. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    27. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    28. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraft, Holger & Seiferling, Thomas & Seifried, Frank Thomas, 2016. "Optimal consumption and investment with Epstein-Zin recursive utility," SAFE Working Paper Series 52, Leibniz Institute for Financial Research SAFE, revised 2016.
    2. Holger Kraft & Frank Seifried & Mogens Steffensen, 2013. "Consumption-portfolio optimization with recursive utility in incomplete markets," Finance and Stochastics, Springer, vol. 17(1), pages 161-196, January.
    3. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    4. Anis Matoussi & Hao Xing, 2016. "Convex duality for stochastic differential utility," Papers 1601.03562, arXiv.org.
    5. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    6. Hao Xing, 2015. "Consumption investment optimization with Epstein-Zin utility in incomplete markets," Papers 1501.04747, arXiv.org, revised Nov 2015.
    7. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    8. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    9. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    10. Kraft, Holger & Munk, Claus & Weiss, Farina, 2022. "Bequest motives in consumption-portfolio decisions with recursive utility," Journal of Banking & Finance, Elsevier, vol. 138(C).
    11. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    12. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    13. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    14. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    15. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    16. Moreira, Alan & Muir, Tyler, 2019. "Should Long-Term Investors Time Volatility?," Journal of Financial Economics, Elsevier, vol. 131(3), pages 507-527.
    17. Shigeta, Yuki, 2022. "Quasi-hyperbolic discounting under recursive utility and consumption–investment decisions," Journal of Economic Theory, Elsevier, vol. 204(C).
    18. Campani, Carlos Heitor & Garcia, René, 2019. "Approximate analytical solutions for consumption/investment problems under recursive utility and finite horizon," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 364-384.
    19. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    20. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.

    More about this item

    Keywords

    Consumption-portfolio choice; Asset pricing; Stochastic differential utility; Incomplete markets; Fixed point approach; FBSDE;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:21:y:2017:i:1:d:10.1007_s00780-016-0316-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.