IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v15y2011i1p117-140.html
   My bibliography  Save this article

Minimal q-entropy martingale measures for exponential time-changed Lévy processes

Author

Listed:
  • Stefan Kassberger
  • Thomas Liebmann

Abstract

No abstract is available for this item.

Suggested Citation

  • Stefan Kassberger & Thomas Liebmann, 2011. "Minimal q-entropy martingale measures for exponential time-changed Lévy processes," Finance and Stochastics, Springer, vol. 15(1), pages 117-140, January.
  • Handle: RePEc:spr:finsto:v:15:y:2011:i:1:p:117-140
    DOI: 10.1007/s00780-010-0133-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-010-0133-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-010-0133-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    2. Schweizer, Martin, 1999. "A minimality property of the minimal martingale measure," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 27-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kassberger, Stefan & Liebmann, Thomas, 2012. "When are path-dependent payoffs suboptimal?," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1304-1310.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    2. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    3. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    4. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    5. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    6. William T. Shaw & Thomas Luu & Nick Brickman, 2009. "Quantile Mechanics II: Changes of Variables in Monte Carlo methods and GPU-Optimized Normal Quantiles," Papers 0901.0638, arXiv.org, revised Dec 2011.
    7. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    8. Paolo Guasoni & Eberhard Mayerhofer, 2020. "Technical Note—Options Portfolio Selection," Operations Research, INFORMS, vol. 68(3), pages 733-740, May.
    9. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    10. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    11. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    12. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    13. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    14. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    15. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Delta Hedging Under Two Price Distribution Assumptions By Likelihood Ratio," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 25-34.
    16. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    17. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    18. Luca Spadafora & Marco Dubrovich & Marcello Terraneo, 2014. "Value-at-Risk time scaling for long-term risk estimation," Papers 1408.2462, arXiv.org.
    19. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    20. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Gradient Estimation Techniques For European Call Options," Accounting & Taxation, The Institute for Business and Finance Research, vol. 4(1), pages 75-81.

    More about this item

    Keywords

    Lévy process; Time change; Subordination; Generalized relative entropy; Martingale measures; 60G44; 60G51; 91B28; G10;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:15:y:2011:i:1:p:117-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.