IDEAS home Printed from https://ideas.repec.org/a/spr/eurpop/v13y1997i3d10.1023_a1005844818027.html
   My bibliography  Save this article

Survival Trees: An Alternative Non-Parametric Multivariate Technique for Life History Analysis

Author

Listed:
  • Alessandra De Rose

    (ISTAT – Istituto Nazionale di Statistica)

  • Alessandro Pallara

    (ISTAT – Istituto Nazionale di Statistica)

Abstract

In this paper an extension of tree-structured methodology to cover censored survival analysis is discussed. Tree-based methods (also called recursive partitioning) provide a useful alternative to the classical survival data analysis techniques, such as the semi-parametric model of Cox, whenever the main purpose is defining groups of individuals, either with complete or censored life history, having different survival probability, based on the values of selected covariates. The essential feature of recursive partitioning is the construction of a decision rule in the form of a binary tree. Trees generally require fewer assumptions than classical methods and handle non standard and non linear data structures efficiently. Tree-growing methods make the processes of covariate selection and grouping of categories in event history models explicit. An example concerning the analysis of time to marriage of Italian women is presented.

Suggested Citation

  • Alessandra De Rose & Alessandro Pallara, 1997. "Survival Trees: An Alternative Non-Parametric Multivariate Technique for Life History Analysis," European Journal of Population, Springer;European Association for Population Studies, vol. 13(3), pages 223-241, September.
  • Handle: RePEc:spr:eurpop:v:13:y:1997:i:3:d:10.1023_a:1005844818027
    DOI: 10.1023/A:1005844818027
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1005844818027
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1005844818027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahn, Hongshik, 1996. "Log-normal regression modeling through recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 21(4), pages 381-398, April.
    2. Ciampi, Antonio, 1991. "Generalized regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 57-78, August.
    3. Loh, Wei-Yin, 1991. "Survival modeling through recursive stratification," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 295-313, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco C. Billari & Johannes Fürnkranz & Alexia Prskawetz, 2006. "Timing, Sequencing, and Quantum of Life Course Events: A Machine Learning Approach," European Journal of Population, Springer;European Association for Population Studies, vol. 22(1), pages 37-65, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    2. Ahn, Hongshik, 1996. "Log-normal regression modeling through recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 21(4), pages 381-398, April.
    3. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    4. Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
    5. da Rosa, Joel Correa & Veiga, Alvaro & Medeiros, Marcelo C., 2008. "Tree-structured smooth transition regression models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2469-2488, January.
    6. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    7. Bárcena Ruiz, María Jesús & Tusell Palmer, Fernando Jorge, 2002. "Multivariate Data Imputation using Trees," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    8. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    9. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2008. "Choosing Attribute Weights for Item Dissimilarity using Clikstream Data with an Application to a Product Catalog Map," ERIM Report Series Research in Management ERS-2008-024-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Christophe Dutang & Quentin Guibert, 2021. "An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests," Post-Print hal-03448250, HAL.
    11. Hecker, Hartmut & Wubbelt, Peter, 1997. "Clustering by response: CBR," Computational Statistics & Data Analysis, Elsevier, vol. 24(2), pages 193-215, April.
    12. Joel Corrêa da Rosa & Álvaro Veiga & Marcelo C. Medeiros, 2003. "Three-structured smooth transition regression models based on CART algorithm," Textos para discussão 469, Department of Economics PUC-Rio (Brazil).
    13. Elise Dusseldorp & Jacqueline Meulman, 2004. "The regression trunk approach to discover treatment covariate interaction," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 355-374, September.
    14. Christopher Withers & Saralees Nadarajah, 2012. "Unbiased estimates for a lognormal regression problem and a nonparametric alternative," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 207-227, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurpop:v:13:y:1997:i:3:d:10.1023_a:1005844818027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.