IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i9d10.1140_epjb_s10051-024-00762-9.html
   My bibliography  Save this article

Bounded confidence opinion dynamics with Asch-like social conformity in complex networks

Author

Listed:
  • Teo Victor Silva

    (Universidade Federal do Rio Grande do Sul)

  • Sebastián Gonçalves

    (Universidade Federal do Rio Grande do Sul)

  • Bruno Requião Cunha

    (TRM Labs)

Abstract

Computational models of peer interaction, with or without networks, have been applied to opinion dynamics to describe social phenomena. Here, we use the Deffuant–Weisbuch (DW) model of opinion dynamics, where a confidence parameter bounds individuals’ interactions, both in paradigmatic artificial networks and some social networks. The interaction of an individual with their immediate neighbors is incorporated into the model using Asch’s concept of social conformity. In general, conformity facilitates consensus in networks by reducing the time required to reach a state of equilibrium and by increasing the likelihood of a single opinion value prevailing throughout the network. In real networks, a higher probability of adherence ( $$p_{Asch}=0.6$$ p Asch = 0.6 ) to the majority opinion increases the proportion of individuals in consensus within less tolerant networks ( $$d

Suggested Citation

  • Teo Victor Silva & Sebastián Gonçalves & Bruno Requião Cunha, 2024. "Bounded confidence opinion dynamics with Asch-like social conformity in complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(9), pages 1-10, September.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:9:d:10.1140_epjb_s10051-024-00762-9
    DOI: 10.1140/epjb/s10051-024-00762-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00762-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00762-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    2. Maia, Hugo P. & Ferreira, Silvio C. & Martins, Marcelo L., 2023. "Controversy-seeking fuels rumor-telling activity in polarized opinion networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Floriana Gargiulo & Alberto Mazzoni, 2008. "Can Extremism Guarantee Pluralism?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-9.
    5. Alexandre Bovet & Hernán A. Makse, 2019. "Influence of fake news in Twitter during the 2016 US presidential election," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    6. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    7. Cheng, Chun & Yu, Changbin, 2019. "Opinion dynamics with bounded confidence and group pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    8. Santo Fortunato, 2004. "UNIVERSALITY OF THE THRESHOLD FOR COMPLETE CONSENSUS FOR THE OPINION DYNAMICS OF DEFFUANTet al," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(09), pages 1301-1307.
    9. Nuno Crokidakis, 2019. "Emergence of moderate opinions as a consequence of group pressure," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(11), pages 1-7, November.
    10. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    11. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    2. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    3. Dong Jiang & Qionglin Dai & Haihong Li & Junzhong Yang, 2024. "Opinion dynamics based on social learning theory," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(12), pages 1-9, December.
    4. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    5. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    6. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    7. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    8. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    10. Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
    11. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    12. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    13. Ghezelbash, Ehsan & Yazdanpanah, Mohammad Javad & Asadpour, Masoud, 2019. "Polarization in cooperative networks through optimal placement of informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Hou, Jian & Li, Wenshan & Jiang, Mingyue, 2021. "Opinion dynamics in modified expressed and private model with bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    15. Juliette Rouchier & Paola Tubaro & Cécile Emery, 2014. "Opinion transmission in organizations: an agent-based modeling approach," Computational and Mathematical Organization Theory, Springer, vol. 20(3), pages 252-277, September.
    16. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    17. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Vacillating about media bias: Changing one’s mind intermittently within a network of political allies and opponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    18. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    19. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    20. Vaidya, Tushar & Chotibut, Thiparat & Piliouras, Georgios, 2021. "Broken detailed balance and non-equilibrium dynamics in noisy social learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:9:d:10.1140_epjb_s10051-024-00762-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.