IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i9d10.1140_epjb_s10051-022-00398-7.html
   My bibliography  Save this article

Dynamical analysis of autonomous Josephson junction jerk oscillator with cosine interference term embedded in FPGA and investigation of its collective behavior in a network

Author

Listed:
  • Balamurali Ramakrishnan

    (Chennai Institute of Technology)

  • Victor Kamdoum Tamba

    (University of Dschang)

  • Hayder Natiq

    (Imam Ja’afar Al-Sadiq University)

  • Alex Stephane Kemnang Tsafack

    (University of Dschang)

  • Anitha Karthikeyan

    (Prathyusha Engineering College)

Abstract

This paper reports on the dynamical analysis, field programmable gate array (FPGA) implementation of autonomous Josephson junction (JJ) jerk oscillator with cosine interference term (AJJJOCIT) and investigation of its collective behavior in a network. The AJJJOCIT derived from a resistive capacitive shunted JJ model with cosine interference term has two or no equilibrium points as a function of direct current (DC). One of the equilibrium points is unconditionally unstable and the other equilibrium point has a Hopf bifurcation where its expression depends on DC and coherence parameters. One-scroll self-excited chaotic attractor, one-scroll chaotic hidden attractor, steady state attractors, bistable periodic attractors, limit cycle and coexistence between periodic and one-scroll chaotic self-excited (or hidden) attractors are revealed in the AJJJOCIT during the numerical analysis. Moreover, the FPGA of AJJJOCIT is implemented and the FPGA results are qualitatively the same as those obtained during the numerical analysis. Finally, the collective dynamics of the AJJJOCIT are studied using a single-layer matrix of the AJJJOCIT. It is demonstrated that chimera states exist in the system and when increasing coupling strength, a completely synchronized network is revealed. Graphical abstract

Suggested Citation

  • Balamurali Ramakrishnan & Victor Kamdoum Tamba & Hayder Natiq & Alex Stephane Kemnang Tsafack & Anitha Karthikeyan, 2022. "Dynamical analysis of autonomous Josephson junction jerk oscillator with cosine interference term embedded in FPGA and investigation of its collective behavior in a network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-12, September.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00398-7
    DOI: 10.1140/epjb/s10051-022-00398-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00398-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00398-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karakaya, Barış & Gülten, Arif & Frasca, Mattia, 2019. "A true random bit generator based on a memristive chaotic circuit: Analysis, design and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 143-149.
    2. Anitha Karthikeyan & Karthikeyan Rajagopal, 2020. "Network Dynamics of a Fractional-Order Phase-Locked Loop with Infinite Coexisting Attractors," Complexity, Hindawi, vol. 2020, pages 1-11, September.
    3. Karthikeyan Rajagopal & Laarem Guessas & Sundarapandian Vaidyanathan & Anitha Karthikeyan & Ashokkumar Srinivasan, 2017. "Dynamical Analysis and FPGA Implementation of a Novel Hyperchaotic System and Its Synchronization Using Adaptive Sliding Mode Control and Genetically Optimized PID Control," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-14, February.
    4. Balamurali Ramakrishnan & Ramesh Ramamoorthy & Chunbiao Li & Akif Akgul & Karthikeyan Rajagopal, 2021. "Spiral Waves in a Lattice Array of Josephson Junction Chaotic Oscillators with Flux Effects," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, January.
    5. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    6. Karthikeyan Rajagopal & Laarem Guessas & Anitha Karthikeyan & Ashokkumar Srinivasan & Girma Adam, 2017. "Fractional Order Memristor No Equilibrium Chaotic System with Its Adaptive Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization," Complexity, Hindawi, vol. 2017, pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Minati, Ludovico & Frasca, Mattia & Valdes-Sosa, Pedro A. & Barbot, Jean-Pierre & Letellier, Christophe, 2023. "Flatness-based real-time control of experimental analog chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2024. "Spiral waves in fractal dimensions and their elimination in λ − ω systems with less damaging intervention," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Kolebaje, Olusola & Popoola, Oyebola & Khan, Muhammad Altaf & Oyewande, Oluwole, 2020. "An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Jahanshahi, Hadi & Orozco-López, Onofre & Munoz-Pacheco, Jesus M. & Alotaibi, Naif D. & Volos, Christos & Wang, Zhen & Sevilla-Escoboza, R. & Chu, Yu-Ming, 2021. "Simulation and experimental validation of a non-equilibrium chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Hashemi, M.S. & Inc, Mustafa & Yusuf, Abdullahi, 2020. "On three-dimensional variable order time fractional chaotic system with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Adel Ouannas & Xiong Wang & Viet-Thanh Pham & Toufik Ziar, 2017. "Dynamic Analysis of Complex Synchronization Schemes between Integer Order and Fractional Order Chaotic Systems with Different Dimensions," Complexity, Hindawi, vol. 2017, pages 1-12, June.
    11. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Yang, Zhen & Liu, Yinzhe & Wu, Yuqi & Qi, Yunliang & Ren, Fengyuan & Li, Shouliang, 2023. "A high speed pseudo-random bit generator driven by 2D-discrete hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Wei, Zhouchao & Akgul, Akif & Kocamaz, Uğur Erkin & Moroz, Irene & Zhang, Wei, 2018. "Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 157-168.
    14. Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Khalaf, Abdul Jalil M. & Alsaedi, Ahmed & Pham, Viet-Thanh & Hayat, Tasawar, 2018. "Investigation of dynamical properties in a chaotic flow with one unstable equilibrium: Circuit design and entropy analysis," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 7-13.
    15. Bocheng Bao & Aihuang Hu & Han Bao & Quan Xu & Mo Chen & Huagan Wu, 2018. "Three-Dimensional Memristive Hindmarsh–Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors," Complexity, Hindawi, vol. 2018, pages 1-11, February.
    16. Karthikeyan Rajagopal & Yesgat Admassu & Riessom Weldegiorgis & Prakash Duraisamy & Anitha Karthikeyan, 2019. "Chaotic Dynamics of an Airfoil with Higher-Order Plunge and Pitch Stiffnesses in Incompressible Flow," Complexity, Hindawi, vol. 2019, pages 1-10, October.
    17. Muhamad Deni Johansyah & Asep Kuswandi Supriatna & Endang Rusyaman & Jumadil Saputra, 2022. "The Existence and Uniqueness of Riccati Fractional Differential Equation Solution and Its Approximation Applied to an Economic Growth Model," Mathematics, MDPI, vol. 10(17), pages 1-21, August.
    18. Qifeng Fu & Xuemei Xu & Chuwen Xiao, 2022. "LQR Chaos Synchronization for a Novel Memristor-Based Hyperchaotic Oscillator," Mathematics, MDPI, vol. 11(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00398-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.