IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p11-d1009173.html
   My bibliography  Save this article

LQR Chaos Synchronization for a Novel Memristor-Based Hyperchaotic Oscillator

Author

Listed:
  • Qifeng Fu

    (School of Physics and Electronics, Central South University, Changsha 410082, China)

  • Xuemei Xu

    (School of Physics and Electronics, Central South University, Changsha 410082, China)

  • Chuwen Xiao

    (School of Physics and Electronics, Central South University, Changsha 410082, China)

Abstract

In a three-dimensional dissipative chaotic system circuit, by superimposing a cubic magnetron-type memristor and connecting a feedback circuit, a new four-dimensional synchronous controlling system is established. The control parameters have a significant impact on the system, and the system displays rich dynamic features such as hyperchaos, chaos, and period states. At the same time, the synchronization scheme for the chaotic system is designed based on the linear quadratic regulator (LQR), which effectively improves the system response speed and reduces the complexity of the synchronous controlling system. Further, numerical verification is carried out. Finally, a detailed verification of the chaotic system’s dynamic characteristics is performed by hardware simulation. Simulation results and performance analysis show that the proposed method has synchronous controlling performance. Compared to some existing synchronous controlling schemes, this method is more widely applicable.

Suggested Citation

  • Qifeng Fu & Xuemei Xu & Chuwen Xiao, 2022. "LQR Chaos Synchronization for a Novel Memristor-Based Hyperchaotic Oscillator," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:11-:d:1009173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/11/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Quan & Lin, Yi & Bao, Bocheng & Chen, Mo, 2016. "Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 186-200.
    2. Joshi, Manoj & Ranjan, Ashish, 2020. "Investigation of dynamical properties in hysteresis-based a simple chaotic waveform generator with two stable equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Zhou, Chao & Wang, Chunhua & Yao, Wei & Lin, Hairong, 2022. "Observer-based synchronization of memristive neural networks under DoS attacks and actuator saturation and its application to image encryption," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. Karthikeyan Rajagopal & Laarem Guessas & Anitha Karthikeyan & Ashokkumar Srinivasan & Girma Adam, 2017. "Fractional Order Memristor No Equilibrium Chaotic System with Its Adaptive Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization," Complexity, Hindawi, vol. 2017, pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    2. Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    3. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Mo Chen & Yang Feng & Han Bao & Bocheng Bao & Huagan Wu & Quan Xu, 2019. "Hybrid State Variable Incremental Integral for Reconstructing Extreme Multistability in Memristive Jerk System with Cubic Nonlinearity," Complexity, Hindawi, vol. 2019, pages 1-16, June.
    5. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    6. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    10. Bao, B.C. & Wu, P.Y. & Bao, H. & Xu, Q. & Chen, M., 2018. "Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 161-170.
    11. Bodo, B. & Armand Eyebe Fouda, J.S. & Mvogo, A. & Tagne, S., 2018. "Experimental hysteresis in memristor based Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 190-195.
    12. Jahanshahi, Hadi & Orozco-López, Onofre & Munoz-Pacheco, Jesus M. & Alotaibi, Naif D. & Volos, Christos & Wang, Zhen & Sevilla-Escoboza, R. & Chu, Yu-Ming, 2021. "Simulation and experimental validation of a non-equilibrium chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Manoj Joshi & Vivek Bhatt & Ashish Ranjan, 2023. "A single parametrically controlled megastable multiscroll attractor with an unstable node," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(5), pages 1-9, May.
    14. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    15. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    17. Colin Sokol Kuka & Yihua Hu & Quan Xu & James Chandler & Mohammed Alkahtani, 2021. "A Novel True Random Number Generator in Near Field Communication as Memristive Wireless Power Transmission," J, MDPI, vol. 4(4), pages 1-20, November.
    18. Wang, Ning & Cui, Mengkai & Yu, Xihong & Shan, Yufan & Xu, Quan, 2023. "Generating multi-folded hidden Chua’s attractors: Two-case study," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Negou, A. Nguomkam & kengne, J. & Tchiotsop, D., 2018. "Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 275-289.
    20. Zhao, Ningning & Qiao, Yuanhua, 2024. "Stability analysis of Clifford-valued memristor-based neural networks with impulsive disturbances and its application to image encryption," Applied Mathematics and Computation, Elsevier, vol. 475(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:11-:d:1009173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.