IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i12d10.1140_epjb_s10051-022-00468-w.html
   My bibliography  Save this article

Monte Carlo simulations of the magnetic behaviour of iron oxide nanoparticle ensembles: taking size dispersion, particle anisotropy, and dipolar interactions into account

Author

Listed:
  • Éléonore Martin

    (University of Mons)

  • Yves Gossuin

    (University of Mons)

  • Sara Bals

    (University of Antwerp)

  • Safiyye Kavak

    (University of Antwerp)

  • Quoc Lam Vuong

    (University of Mons)

Abstract

In this work, the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) submitted to an external magnetic field are studied using a Metropolis algorithm. The influence on the M(B) curves of the size distribution of the nanoparticles, of uniaxial anisotropy, and of dipolar interaction between the cores are examined, as well as the influence of drying the samples under a zero or non-zero magnetic field. It is shown that the anisotropy impacts the shape of the magnetization curves, which then deviate from a pure Langevin behaviour, whereas the dipolar interaction has no influence on the curves at 300 K for small particles (with a radius of $$3\,\hbox {nm}$$ 3 nm ). The fitting of the magnetization curves of particles with magnetic anisotropy to a Langevin model (including a size distribution of the particles) can then lead to erroneous values of the distribution parameters. The simulation results are qualitatively compared to experimental results obtained for iron oxide nanoparticles (with a $$3.21\, \hbox {nm}$$ 3.21 nm median radius). Graphic Abstract

Suggested Citation

  • Éléonore Martin & Yves Gossuin & Sara Bals & Safiyye Kavak & Quoc Lam Vuong, 2022. "Monte Carlo simulations of the magnetic behaviour of iron oxide nanoparticle ensembles: taking size dispersion, particle anisotropy, and dipolar interactions into account," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(12), pages 1-17, December.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:12:d:10.1140_epjb_s10051-022-00468-w
    DOI: 10.1140/epjb/s10051-022-00468-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00468-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00468-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernhard Gleich & Jürgen Weizenecker, 2005. "Tomographic imaging using the nonlinear response of magnetic particles," Nature, Nature, vol. 435(7046), pages 1214-1217, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Salamon & Martin Hofmann & Caroline Jung & Michael Gerhard Kaul & Franziska Werner & Kolja Them & Rudolph Reimer & Peter Nielsen & Annika vom Scheidt & Gerhard Adam & Tobias Knopp & Harald It, 2016. "Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    2. Ren, Yaqian & Kong, Yanlong & Pang, Zhonghe & Wang, Jiyang, 2023. "A comprehensive review of tracer tests in enhanced geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Vladyslav Gapyak & Thomas März & Andreas Weinmann, 2022. "Quality-Enhancing Techniques for Model-Based Reconstruction in Magnetic Particle Imaging," Mathematics, MDPI, vol. 10(18), pages 1-22, September.
    4. Justin J Konkle & Patrick W Goodwill & Daniel W Hensley & Ryan D Orendorff & Michael Lustig & Steven M Conolly, 2015. "A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-15, October.
    5. Nima Mirkhani & Michael G. Christiansen & Tinotenda Gwisai & Stefano Menghini & Simone Schuerle, 2024. "Spatially selective delivery of living magnetic microrobots through torque-focusing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Ping Liu & Bao-Li Chen & Kan Liu & Hao Xie, 2016. "Magnetic nanoparticles research: a scientometric analysis of development trends and research fronts," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1591-1602, September.
    7. Vladimir Zverev & Alla Dobroserdova & Andrey Kuznetsov & Alexey Ivanov & Ekaterina Elfimova, 2021. "Computer Simulations of Dynamic Response of Ferrofluids on an Alternating Magnetic Field with High Amplitude," Mathematics, MDPI, vol. 9(20), pages 1-15, October.
    8. Gharaibeh, Maen & Alqaiem, Samah & Obeidat, Abdalla & Al-Qawasmeh, Ahmad & Abedrabbo, Sufian & Badarneh, Mohammad H.A., 2021. "Magnetic properties of the ferrimagnetic triangular nanotube with core–shell structure: A Monte Carlo study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:12:d:10.1140_epjb_s10051-022-00468-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.