Bayesian VARs of the U.S. economy before and during the pandemic
Author
Abstract
Suggested Citation
DOI: 10.1007/s40822-023-00229-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Renée Fry & Adrian Pagan, 2011.
"Sign Restrictions in Structural Vector Autoregressions: A Critical Review,"
Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
- Renee Fry & Adrian Pagan, 2010. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," NCER Working Paper Series 57, National Centre for Econometric Research.
- Renee Fry & Adrian Pagan, 2010. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," CAMA Working Papers 2010-22, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Frank Schorfheide & Dongho Song, 2024.
"Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic,"
International Journal of Central Banking, International Journal of Central Banking, vol. 20(4), pages 275-320, October.
- Frank Schorfheide & Dongho Song, 2020. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," Working Papers 20-26, Federal Reserve Bank of Philadelphia.
- Schorfheide, Frank & Song, Dongho, 2021. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," CEPR Discussion Papers 16760, C.E.P.R. Discussion Papers.
- Frank Schorfheide & Dongho Song, 2020. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," PIER Working Paper Archive 20-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Frank Schorfheide & Dongho Song, 2021. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," NBER Working Papers 29535, National Bureau of Economic Research, Inc.
- Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999.
"Monetary policy shocks: What have we learned and to what end?,"
Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148,
Elsevier.
- Lawrence J. Christiano & Martin S. Eichenbaum & Charles L. Evans, 1997. "Monetary policy shocks: what have we learned and to what end?," Working Paper Series, Macroeconomic Issues WP-97-18, Federal Reserve Bank of Chicago.
- Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 1998. "Monetary Policy Shocks: What Have We Learned and to What End?," NBER Working Papers 6400, National Bureau of Economic Research, Inc.
- Maik H. Wolters, 2015.
"Evaluating Point and Density Forecasts of DSGE Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
- Wolters, Maik Hendrik, 2012. "Evaluating point and density forecasts of DSGE models," MPRA Paper 36147, University Library of Munich, Germany.
- Wolters, Maik Hendrik, 2012. "Evaluating point and density forecasts of DSGE models," IMFS Working Paper Series 59, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Wolters, Maik H., 2013. "Evaluating point and density forecasts of DSGE models," Economics Working Papers 2013-03, Christian-Albrechts-University of Kiel, Department of Economics.
- Wolters, Maik H., 2011.
"Forecasting under Model Uncertainty,"
VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis
48723, Verein für Socialpolitik / German Economic Association.
- Wolters, Maik Hendrik, 2012. "Evaluating point and density forecasts of DSGE models," MPRA Paper 36147, University Library of Munich, Germany.
- Wolters, Maik H., 2013. "Evaluating point and density forecasts of DSGE models," Economics Working Papers 2013-03, Christian-Albrechts-University of Kiel, Department of Economics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Bayesian VARs: Specification Choices and Forecast Accuracy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2011. "Bayesian VARs: Specification Choices and Forecast Accuracy," CEPR Discussion Papers 8273, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2011. "Bayesian VARs: specification choices and forecast accuracy," Working Papers (Old Series) 1112, Federal Reserve Bank of Cleveland.
- Hamilton, J.D., 2016.
"Macroeconomic Regimes and Regime Shifts,"
Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201,
Elsevier.
- James D. Hamilton, 2016. "Macroeconomic Regimes and Regime Shifts," NBER Working Papers 21863, National Bureau of Economic Research, Inc.
- Elena Bobeica & Marek Jarociński, 2019.
"Missing Disinflation and Missing Inflation: A VAR Perspective,"
International Journal of Central Banking, International Journal of Central Banking, vol. 15(1), pages 199-232, March.
- Jarociński, Marek & Bobeica, Elena, 2017. "Missing disinflation and missing inflation: the puzzles that aren't," Working Paper Series 2000, European Central Bank.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Sims, Christopher A & Zha, Tao, 1998.
"Bayesian Methods for Dynamic Multivariate Models,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
- Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Litterman, Robert B, 1986.
"Forecasting with Bayesian Vector Autoregressions-Five Years of Experience,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
- Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
- John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
- George Kapetanios & Haroon Mumtaz & Ibrahim Stevens & Konstantinos Theodoridis, 2012.
"Assessing the Economy‐wide Effects of Quantitative Easing,"
Economic Journal, Royal Economic Society, vol. 122(564), pages 316-347, November.
- Kapetanios, George & Mumtaz, Haroon & Stevens, Ibrahim & Theodoridis, Konstantinos, 2012. "Assessing the economy-wide effects of quantitative easing," Bank of England working papers 443, Bank of England.
- Rubaszek, Michał, 2021.
"Forecasting crude oil prices with DSGE models,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
- Michał Rubaszek, 2019. "Forecasting crude oil prices with DSGE models," GRU Working Paper Series GRU_2019_024, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
- Primiceri, Giorgio & Lenza, Michele, 2020.
"How to Estimate a VAR after March 2020,"
CEPR Discussion Papers
15245, C.E.P.R. Discussion Papers.
- Michele Lenza & Giorgio E. Primiceri, 2020. "How to Estimate a VAR after March 2020," NBER Working Papers 27771, National Bureau of Economic Research, Inc.
- Lenza, Michele & Primiceri, Giorgio E., 2020. "How to estimate a VAR after March 2020," Working Paper Series 2461, European Central Bank.
- Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Kilian,Lutz & Lütkepohl,Helmut, 2018.
"Structural Vector Autoregressive Analysis,"
Cambridge Books,
Cambridge University Press, number 9781107196575, October.
- Kilian,Lutz & Lütkepohl,Helmut, 2017. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781316647332, October.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Evgenidis, Anastasios & Fasianos, Apostolos, 2023. "Modelling monetary policy’s impact on labour markets under Covid-19," Economics Letters, Elsevier, vol. 230(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bekiros Stelios & Paccagnini Alessia, 2015.
"Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
- Stelios D. Bekiros & Alessia Paccagnini, 2014. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Open Access publications 10197/7588, School of Economics, University College Dublin.
- Tallman, Ellis W. & Zaman, Saeed, 2020.
"Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
- Ellis W. Tallman & Saeed Zaman, 2018. "Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy," Working Papers (Old Series) 1809, Federal Reserve Bank of Cleveland.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2021.
"No‐arbitrage priors, drifting volatilities, and the term structure of interest rates,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 495-516, August.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2014. "No Arbitrage Priors, Drifting Volatilities, and the Term Structure of Interest Rates," CEPR Discussion Papers 9848, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "No-Arbitrage Priors, Drifting Volatilities, and the Term Structure of Interest Rates," Working Papers 20-27, Federal Reserve Bank of Cleveland.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016.
"Forecasting China's economic growth and inflation,"
China Economic Review, Elsevier, vol. 41(C), pages 46-61.
- Patrick Higgins & Tao Zha & Karen Zhong, 2016. "Forecasting China's Economic Growth and Inflation," NBER Working Papers 22402, National Bureau of Economic Research, Inc.
- Patrick C. Higgins & Tao Zha & Karen Zhong, 2016. "Forecasting China's Economic Growth and Inflation," FRB Atlanta Working Paper 2016-7, Federal Reserve Bank of Atlanta.
- Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
- Andrea Carriero & Davide Pettenuzzo & Shubhranshu Shekhar, 2024. "Macroeconomic Forecasting with Large Language Models," Papers 2407.00890, arXiv.org.
- Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
- Knotek, Edward S. & Zaman, Saeed, 2019.
"Financial nowcasts and their usefulness in macroeconomic forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
- Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
- Reif Magnus, 2021.
"Macroeconomic uncertainty and forecasting macroeconomic aggregates,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
- Magnus Reif, 2018. "Macroeconomic Uncertainty and Forecasting Macroeconomic Aggregates," ifo Working Paper Series 265, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg, 2016.
"Multivariate Forecasting with BVARs and DSGE Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 718-740, December.
- Berg, Tim Oliver, 2015. "Multivariate Forecasting with BVARs and DSGE Models," MPRA Paper 62405, University Library of Munich, Germany.
- Danilo Cascaldi-Garcia, 2022. "Pandemic Priors," International Finance Discussion Papers 1352, Board of Governors of the Federal Reserve System (U.S.).
- Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Auer, Simone, 2019.
"Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR,"
Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
- Dr. Simone Auer, 2014. "Monetary Policy Shocks and Foreign Investment Income: Evidence from a large Bayesian VAR," Working Papers 2014-02, Swiss National Bank.
- Simone Auer, 2014. "Monetary policy shocks and foreign investment income: evidence from a large Bayesian VAR," Globalization Institute Working Papers 170, Federal Reserve Bank of Dallas.
- Hanck, Christoph & Prüser, Jan, 2016. "House prices and interest rates: Bayesian evidence from Germany," Ruhr Economic Papers 620, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
More about this item
Keywords
COVID-19; Bayesian VAR models; Impulse response functions; Forecasting;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- F10 - International Economics - - Trade - - - General
- O50 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurase:v:13:y:2023:i:2:d:10.1007_s40822-023-00229-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.