IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v35y2015i2d10.1007_s10669-015-9540-y.html
   My bibliography  Save this article

Systems engineering framework for cyber physical security and resilience

Author

Listed:
  • Daniel DiMase

    (Honeywell Aerospace)

  • Zachary A. Collier

    (US Army Engineer Research and Development Center)

  • Kenneth Heffner

    (Honeywell Aerospace)

  • Igor Linkov

    (US Army Engineer Research and Development Center)

Abstract

As our infrastructure, economy, and national defense increasingly rely upon cyberspace and information technology, the security of the systems that support these functions becomes more critical. Recent proclamations from the White House, Department of Defense, and elsewhere have called for increased resilience in our cyber capabilities. The growth of cyber threats extends well beyond the traditional areas of security managed by Information Technology software. The new cyber threats are introduced through vulnerabilities in infrastructures and industries supporting IT capital and operations. These vulnerabilities drive establishment of the area of cyber physical systems security. Cyber physical systems security integrates security into a wide range of interdependent computing systems and adjacent systems architectures. However, the concept of cyber physical system security is poorly understood, and the approach to manage vulnerabilities is fragmented. As cyber physical systems security is better understood, it will require a risk management framework that includes an integrated approach across physical, information, cognitive, and social domains to ensure resilience. The expanse of the threat environment will require a systems engineering approach to ensure wider, collaborative resiliency. Approaching cyber physical system security through the lens of resilience will enable the application of both integrated and targeted security measures and policies that ensure the continued functionality of critical services provided by our cyber infrastructure.

Suggested Citation

  • Daniel DiMase & Zachary A. Collier & Kenneth Heffner & Igor Linkov, 2015. "Systems engineering framework for cyber physical security and resilience," Environment Systems and Decisions, Springer, vol. 35(2), pages 291-300, June.
  • Handle: RePEc:spr:envsyd:v:35:y:2015:i:2:d:10.1007_s10669-015-9540-y
    DOI: 10.1007/s10669-015-9540-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-015-9540-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-015-9540-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    2. James H. Lambert & Jeffrey M. Keisler & William E. Wheeler & Zachary A. Collier & Igor Linkov, 2013. "Multiscale approach to the security of hardware supply chains for energy systems," Environment Systems and Decisions, Springer, vol. 33(3), pages 326-334, September.
    3. Roege, Paul E. & Collier, Zachary A. & Mancillas, James & McDonagh, John A. & Linkov, Igor, 2014. "Metrics for energy resilience," Energy Policy, Elsevier, vol. 72(C), pages 249-256.
    4. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    5. Andjelka Kelic & Zachary A. Collier & Christopher Brown & Walter E. Beyeler & Alexander V. Outkin & Vanessa N. Vargas & Mark A. Ehlen & Christopher Judson & Ali Zaidi & Billy Leung & Igor Linkov, 2013. "Decision framework for evaluating the macroeconomic risks and policy impacts of cyber attacks," Environment Systems and Decisions, Springer, vol. 33(4), pages 544-560, December.
    6. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wood, Matthew D. & Wells, Emily M. & Rice, Glenn & Linkov, Igor, 2019. "Quantifying and mapping resilience within large organizations," Omega, Elsevier, vol. 87(C), pages 117-126.
    2. Alexander A. Ganin & Phuoc Quach & Mahesh Panwar & Zachary A. Collier & Jeffrey M. Keisler & Dayton Marchese & Igor Linkov, 2020. "Multicriteria Decision Framework for Cybersecurity Risk Assessment and Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 183-199, January.
    3. Alessandro Annarelli & Giulia Palombi, 2021. "Digitalization Capabilities for Sustainable Cyber Resilience: A Conceptual Framework," Sustainability, MDPI, vol. 13(23), pages 1-9, November.
    4. Niloofar Jahani & Arash Sepehri & Hadi Rezaei Vandchali & Erfan Babaee Tirkolaee, 2021. "Application of Industry 4.0 in the Procurement Processes of Supply Chains: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    5. Radanliev, Petar & De Roure, Dave & Cannady, Stacy & Mantilla Montalvo, Rafael & Nicolescu, Razvan & Huth, Michael, 2018. "Analysing IoT cyber risk for estimating IoT cyber insurance," EconStor Conference Papers 193692, ZBW - Leibniz Information Centre for Economics.
    6. Howard Miller & Charla Griffy-Brown, 2021. "Evaluating risk for top-line growth and bottom-line protection: enterprise risk management optimization (ERMO)," Environment Systems and Decisions, Springer, vol. 41(3), pages 468-484, September.
    7. Petar Radanliev & David De Roure, 2021. "Epistemological and Bibliometric Analysis of Ethics and Shared Responsibility—Health Policy and IoT Systems," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    8. Saeed Hasan Al Zaabi & Ruzaidi Zamri, 2022. "Managing Security Threats through Touchless Security Technologies: An Overview of the Integration of Facial Recognition Technology in the UAE Oil and Gas Industry," Sustainability, MDPI, vol. 14(22), pages 1-32, November.
    9. Igor Linkov & Sabrina Larkin & James H. Lambert, 2015. "Concepts and approaches to resilience in a variety of governance and regulatory domains," Environment Systems and Decisions, Springer, vol. 35(2), pages 183-184, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander A. Ganin & Phuoc Quach & Mahesh Panwar & Zachary A. Collier & Jeffrey M. Keisler & Dayton Marchese & Igor Linkov, 2020. "Multicriteria Decision Framework for Cybersecurity Risk Assessment and Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 183-199, January.
    2. Zachary A. Collier & Igor Linkov & James H. Lambert, 2013. "Four domains of cybersecurity: a risk-based systems approach to cyber decisions," Environment Systems and Decisions, Springer, vol. 33(4), pages 469-470, December.
    3. Elizabeth B. Connelly & Lisa M. Colosi & Andres F. Clarens & James H. Lambert, 2015. "Risk Analysis of Biofuels Industry for Aviation with Scenario‐Based Expert Elicitation," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 178-191, March.
    4. Seth D. Baum, 2015. "Risk and resilience for unknown, unquantifiable, systemic, and unlikely/catastrophic threats," Environment Systems and Decisions, Springer, vol. 35(2), pages 229-236, June.
    5. Terje Aven, 2013. "On How to Deal with Deep Uncertainties in a Risk Assessment and Management Context," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2082-2091, December.
    6. Christopher W. Karvetski & James H. Lambert, 2012. "Evaluating deep uncertainties in strategic priority‐setting with an application to facility energy investments," Systems Engineering, John Wiley & Sons, vol. 15(4), pages 483-493, December.
    7. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    8. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    9. Timothy Fraser & Lily Cunningham & Amos Nasongo, 2021. "Build Back Better? Effects of Crisis on Climate Change Adaptation Through Solar Power in Japan and the United States," Global Environmental Politics, MIT Press, vol. 21(1), pages 54-75, Winter.
    10. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    12. Carvallo, Juan Pablo & Frick, Natalie Mims & Schwartz, Lisa, 2022. "A review of examples and opportunities to quantify the grid reliability and resilience impacts of energy efficiency," Energy Policy, Elsevier, vol. 169(C).
    13. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    15. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    16. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    17. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    19. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    20. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:35:y:2015:i:2:d:10.1007_s10669-015-9540-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.