Author
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerged infection in humans affecting the Arabian Peninsula, Europe, and North Africa. The source and persistence of the infection in humans remains unknown. The aim of this paper was to apply a risk analysis approach to the epidemiology of MERS-CoV and to understand the source of ongoing infections. The epidemiology of MERS-CoV was reviewed and compared to SARS. Each observed feature of MERS-CoV epidemiology was summarized and fitted to either an epidemic or one of two sporadic scenarios (either animal or deliberate release). As of May 2014, MERS-CoV has infected over 681 people and killed a further 204 over 2 years. In contrast, there were 8,273 cases and 775 deaths from SARS within 8 months. MERS-CoV has a more sporadic pattern unlike the clear epidemic pattern seen with SARS, and an unusual concentration of cases in the Middle East, without epidemics in other countries to which it has spread. SARS, with a higher reproductive number (R0), was eliminated from humans within 8 months of emerging, yet MERS-CoV, with a low R0 has persisted in humans over a far more prolonged period. This is at odds with the expected behavior of a virus with a low R0, which theoretically should not persist unless there are ongoing introductions of infection into humans, and poses the question “what is the source of continuing infections in humans?” A hospital outbreak in Al Ahsa, the Kingdom of Saudi Arabia (KSA), had a classic epidemic pattern with some human-to-human transmission. However, 3 different strains were identified in that outbreak, an unexpected and unexplained finding for what appears to be a single source outbreak. Since this outbreak in April 2013, there has been a large increase in new cases, mainly in KSA in April and May 2014, with no corresponding epidemics in other countries. Yet MERS-CoV was present in KSA over several mass gatherings (which predispose to epidemics), including the Hajj pilgrimage, without an epidemic arising. Furthermore, although the virus has been identified in bats and camels, the mode of ongoing transmission to humans remains uncertain. Although some cases appear to be transmitted from human to human, and a few have animal or camel exposure, many cases have no history of contact with either animals or human cases. A high proportion of asymptomatic or otherwise undetected cases have been postulated as an explanation for the unusual epidemiology, yet active surveillance does not support this. When the observed data were fitted to different disease patterns, the features of MERS-CoV fit better with a sporadic pattern, with evidence for either deliberate release or an animal source. There are many discrepancies in the observed epidemiology of MERS-CoV, which better fits a sporadic than an epidemic pattern. Possible explanations of the unusual features of the epidemiology include human-to-human transmission with a large proportion of undetected cases; or sporadic ongoing infections from a non-human source; or a combination of both. Possible sources of ongoing sporadic infection in humans include animals (camels appear the most likely source), or deliberate release. The latter could explain 3 strains being present in a single hospital outbreak. Genetic testing should be conducted to determine whether the virus is evolving to be more transmissible. Better ascertainment of mild or asymptomatic cases is also needed. Finally, the discrepant epidemiology warrants critical analysis of all possible explanations, and involvement of all stakeholders in biosecurity, and deliberate release must be seriously considered and at least acknowledged as a possibility.
Suggested Citation
C. Raina MacIntyre, 2014.
"The discrepant epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV),"
Environment Systems and Decisions, Springer, vol. 34(3), pages 383-390, September.
Handle:
RePEc:spr:envsyd:v:34:y:2014:i:3:d:10.1007_s10669-014-9506-5
DOI: 10.1007/s10669-014-9506-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Xin Chen & Abrar A. Chughtai & Chandini R. MacIntyre, 2020.
"Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS‐CoV) Outbreak in Saudi Arabia,"
Risk Analysis, John Wiley & Sons, vol. 40(5), pages 915-925, May.
- Igor Linkov & James H. Lambert & Zachary A. Collier, 2014.
"Introduction to the inaugural general issue of environment systems and decisions,"
Environment Systems and Decisions, Springer, vol. 34(3), pages 367-368, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Jiraporn Lamwong & Puntani Pongsumpun & I-Ming Tang & Napasool Wongvanich, 2022.
"Vaccination’s Role in Combating the Omicron Variant Outbreak in Thailand: An Optimal Control Approach,"
Mathematics, MDPI, vol. 10(20), pages 1-29, October.
- Xin Chen & Abrar A. Chughtai & Chandini R. MacIntyre, 2020.
"Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS‐CoV) Outbreak in Saudi Arabia,"
Risk Analysis, John Wiley & Sons, vol. 40(5), pages 915-925, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:34:y:2014:i:3:d:10.1007_s10669-014-9506-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.