IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v33y2013i3d10.1007_s10669-013-9460-7.html
   My bibliography  Save this article

Simulation and mathematical programming decision-making support for smallholder farming

Author

Listed:
  • Andrew J. Collins

    (Old Dominion University)

  • Kasi Bharath Vegesana

    (Old Dominion University)

  • Michael J. Seiler

    (The College of William & Mary)

  • Patrick O’Shea

    (Appalachian State University)

  • Prasanna Hettiarachchi

    (Saaraketha)

  • Frederic McKenzie

    (Old Dominion University)

Abstract

Many mathematical programs have been developed over the past 50 years to aid agricultural experts and other farming decision-makers. The application of these mathematical programs has seen limited success because their development has focused on mathematical theory as opposed to the requirements needed for application. This paper describes the development of two mathematical programs that were designed to integrate with a visualization simulation that aids a nontraditional group of agricultural decision-makers: illiterate Sri Lankan subsistence farmers. The simulation was designed to help these illiterate farmers make business decisions about their crop selection choices which, in turn, will help them develop their business plans required for obtaining bank micro-loans. This paper’s focus is on the use of linear programming as a potential tool to demonstrate the benefits of crop diversification and rotation to the farmer based on various available crop types. It also highlights the issues using such an approach.

Suggested Citation

  • Andrew J. Collins & Kasi Bharath Vegesana & Michael J. Seiler & Patrick O’Shea & Prasanna Hettiarachchi & Frederic McKenzie, 2013. "Simulation and mathematical programming decision-making support for smallholder farming," Environment Systems and Decisions, Springer, vol. 33(3), pages 427-439, September.
  • Handle: RePEc:spr:envsyd:v:33:y:2013:i:3:d:10.1007_s10669-013-9460-7
    DOI: 10.1007/s10669-013-9460-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-013-9460-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-013-9460-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    2. Thomas B. Wiens, 1976. "Peasant Risk Aversion and Allocative Behavior: A Quadratic Programming Experiment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 58(4_Part_1), pages 629-635.
    3. Dogliotti, S. & van Ittersum, M.K. & Rossing, W.A.H., 2005. "A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 86(1), pages 29-51, October.
    4. Hildreth, Clifford & Knowles, Glenn J., 1982. "Some Estimates of Farmers' Utility Functions," Technical Bulletins 54545, University of Minnesota, Agricultural Experiment Station.
    5. P. B. R. Hazell, 1971. "A Linear Alternative to Quadratic and Semivariance Programming for Farm Planning under Uncertainty: Reply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 53(4), pages 664-665.
    6. Bandyopadhyay, R. & Datta, S., 1990. "Applications of OR in developing economies: Some Indian experiences," European Journal of Operational Research, Elsevier, vol. 49(2), pages 188-199, November.
    7. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    8. Haneveld, W. K. Klein & Stegeman, A. W., 2005. "Crop succession requirements in agricultural production planning," European Journal of Operational Research, Elsevier, vol. 166(2), pages 406-429, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diaz-Gonzalez, Freddy A. & Vuelvas, Jose. & Vallejo, Victoria E. & Patino, D., 2023. "Fertilization rate optimization model for potato crops to maximize yield while reducing polluting nitrogen emissions," Ecological Modelling, Elsevier, vol. 485(C).
    2. Peter A. Beling, 2013. "Multi-scale decision making: challenges in engineering and environmental systems," Environment Systems and Decisions, Springer, vol. 33(3), pages 323-325, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young, Douglas & Lin, William & Pope, Rulon & Robison, Lindon & Selley, Roger, 1979. "Risk Preferences Of Agricultual Producers:Their Measurement And Use," Risk Management in Agriculture: Behavioral, Managerial, and Policy Issues, January 25-26, 1979, San Francisco, California 271459, Regional Research Projects > W-149: An Economic Evaluation of Managing Market Risks in Agriculture.
    2. Detlefsen, Nina K. & Jensen, Allan Leck, 2007. "Modelling optimal crop sequences using network flows," Agricultural Systems, Elsevier, vol. 94(2), pages 566-572, May.
    3. Marius Rădulescu & Constanta Rădulescu & Gheorghiţă Zbăganu, 2014. "A portfolio theory approach to crop planning under environmental constraints," Annals of Operations Research, Springer, vol. 219(1), pages 243-264, August.
    4. Hassan, Rashid M. & Hallam, Arne & D'Silva, B., 1988. "Stochastic Technology in a Programming Framework: A Generalized E. V. Model," 1988 Annual Meeting, August 1-3, Knoxville, Tennessee 270212, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Ridier, Aude & Chaib, Karim & Roussy, Caroline, 2016. "A Dynamic Stochastic Programming model of crop rotation choice to test the adoption of long rotation under price and production risks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 270-279.
    6. Boisvert, Richard N., 1985. "The Role Of Alternative Risk Programming Models In Empirical Research," Regional Research Projects > 1985: S-180 Annual Meeting, March 24-27, 1985, Charleston, South Carolina 271793, Regional Research Projects > S-180: An Economic Analysis of Risk Management Strategies for Agricultural Production Firms.
    7. Anderson, Kim B. & Mapp, Harry P., Jr., 1996. "Risk Management Programs In Extension," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 21(1), pages 1-8, July.
    8. Doppler, Werner & Salman, Amer Z. & Al-Karablieh, Emad K. & Wolff, Heinz-Peter, 2002. "The impact of water price strategies on the allocation of irrigation water: the case of the Jordan Valley," Agricultural Water Management, Elsevier, vol. 55(3), pages 171-182, June.
    9. King, Robert P. & Robison, Lindon J., 1980. "Implementing Stochastic Dominance With Respect To A Function," Risk Analysis in Agriculture: Research and Educational Developments, January 16-18, 1980, Tucson, Arizona 271563, Regional Research Projects > W-149: An Economic Evaluation of Managing Market Risks in Agriculture.
    10. Musshoff, Oliver & Hirschauer, Norbert, 2004. "Optimierung unter Unsicherheit mit Hilfe stochastischer Simulation und Genetischer Algorithmen – dargestellt anhand der Optimierung des Produktionsprogramms eines Brandenburger Marktfruchtbetriebes," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 53(07), pages 1-16.
    11. Graeme J. Doole & Alvaro J. Romera & Alfredo A. Adler, 2012. "A Mathematical Optimisation Model of a New Zealand Dairy Farm: The Integrated Dairy Enterprise (IDEA) Framework," Working Papers in Economics 12/01, University of Waikato.
    12. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    13. Bechtel, Amos I. & Young, Douglas L., 1999. "The Importance Of Using Farm Level Risk Estimates In Crp Enrollment Decisions," 1999 Annual Meeting, July 11-14, 1999, Fargo, ND 35717, Western Agricultural Economics Association.
    14. Ravi Kashyap, 2016. "Solving the Equity Risk Premium Puzzle and Inching Towards a Theory of Everything," Papers 1604.04872, arXiv.org, revised Sep 2019.
    15. Erasmus, Barend & van Jaarsveld, Albert & van Zyl, Johan & Vink, Nick, 2000. "The effects of climate change on the farm sector in the Western Cape," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 39(4), pages 1-15, December.
    16. Asci, Serhat & VanSickle, John J. & Cantliffe, Daniel J., 2014. "Risk in Investment Decision Making and Greenhouse Tomato Production Expansion in Florida," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 17(4), pages 1-26, November.
    17. Max Zongyuan Shang & Ken McEwan, 2021. "The make‐or‐buy decision of feed on livestock farms: Evidence from Ontario swine farms," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(3), pages 353-368, September.
    18. Lence, Sergio H., 1996. "Relaxing The Assumptions Of Minimum-Variance Hedging," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 21(1), pages 1-17, July.
    19. Vontalge, Alan L., 1991. "A feasibility study of swine producer management cooperatives," ISU General Staff Papers 1991010108000018168, Iowa State University, Department of Economics.
    20. McCarl, Bruce A. & Musser, Wesley N., 1985. "Modeling Long Run Risk In Production And Investment Decisions," Regional Research Projects > 1985: S-180 Annual Meeting, March 24-27, 1985, Charleston, South Carolina 271799, Regional Research Projects > S-180: An Economic Analysis of Risk Management Strategies for Agricultural Production Firms.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:33:y:2013:i:3:d:10.1007_s10669-013-9460-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.