IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i8d10.1007_s10668-023-03454-z.html
   My bibliography  Save this article

Life cycle energy use efficiency and greenhouse gas emissions of circulating fluidized bed coal-fired plant with coal gangue and coal co-combustion

Author

Listed:
  • Yuhuan Xu

    (Anhui University of Science and Technology)

  • Huijun Wu

    (Anhui University of Science and Technology)

  • Zhanfeng Dong

    (Chinese Academy of Environmental Planning)

  • Qianqian Wang

    (Anhui University of Science and Technology)

  • Xinyue Chen

    (Anhui University of Science and Technology)

Abstract

Few studies explore the ideal co-combustion ratios of gangue and coal and improve CFB power generation technology. Here, we use life cycle assessment to establish a model to evaluate greenhouse gas (GHG) emissions and energy use efficiency (EUE) of a circulating fluidized bed (CFB) coal-fired plant with gangue and coal co-combustion technology. The life cycle includes coal mining, coal washing and power generation. The functional unit is 1 MWh electricity output. Considering the different fuel components of coal and coal gangue, we conduct six scenarios with coal mass ratio of 0%, 10%, 20%, 30%, 40%, and 50% in the mixed fuel, respectively. The results show that the increase in the proportion of coal will lead to the decrease in GHG emissions. The scenario with pure gangue has the highest GHG emission of 1105 kg CO2 eq/MWh, while the scenario with 50% coal has the lowest GHG emission of 956 kg CO2 eq/MWh. Among all GHGs, CO2 contributes the largest GHG emissions. The power generation is the main source of GHG emissions. Overall, the ultra-low emission of N2O ensures that CFB power generation technology has the advantage of low GHG emissions. The EUE will increase with the coal mass ratio increases. The scenario with pure gangue has the lowest EUE of 34.0%, while the scenario with 50% coal has the highest EUE of 35.5%. Fuel consumption and plant auxiliary power consumption are the main energy inputs. Finally, we provide the ideal co-combustion coal mass ratio of 20% to 30% and suggest some corresponding measures to reduce GHG emissions and improve EUE simultaneously.

Suggested Citation

  • Yuhuan Xu & Huijun Wu & Zhanfeng Dong & Qianqian Wang & Xinyue Chen, 2024. "Life cycle energy use efficiency and greenhouse gas emissions of circulating fluidized bed coal-fired plant with coal gangue and coal co-combustion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20049-20071, August.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03454-z
    DOI: 10.1007/s10668-023-03454-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03454-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03454-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
    2. Jiang, Xuemei & Guan, Dabo, 2016. "Determinants of global CO2 emissions growth," Applied Energy, Elsevier, vol. 184(C), pages 1132-1141.
    3. Wang, Ning & Shen, Ruifang & Wen, Zongguo & De Clercq, Djavan, 2019. "Life cycle energy efficiency evaluation for coal development and utilization," Energy, Elsevier, vol. 179(C), pages 1-11.
    4. Zhang, Weirong & Ren, Mengjia & Kang, Junjie & Zhou, Yiou & Yuan, Jiahai, 2022. "Estimating stranded coal assets in China's power sector," Utilities Policy, Elsevier, vol. 75(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    2. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    3. Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    4. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    5. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    6. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    7. Fan, Jing-Li & Zhang, Hao & Zhang, Xian, 2020. "Unified efficiency measurement of coal-fired power plants in China considering group heterogeneity and technological gaps," Energy Economics, Elsevier, vol. 88(C).
    8. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    9. Jiang, Suqin & Chen, Zun & Shan, Li & Chen, Xinyu & Wang, Haikun, 2017. "Committed CO2 emissions of China's coal-fired power generators from 1993 to 2013," Energy Policy, Elsevier, vol. 104(C), pages 295-302.
    10. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    11. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    12. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.
    13. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    14. Wang, Ning & Shen, Ruifang & Wen, Zongguo & De Clercq, Djavan, 2019. "Life cycle energy efficiency evaluation for coal development and utilization," Energy, Elsevier, vol. 179(C), pages 1-11.
    15. Li, Gao & Ruonan, Li & Yingdan, Mei & Xiaoli, Zhao, 2022. "Improve technical efficiency of China's coal-fired power enterprises: Taking a coal-fired-withdrawl context," Energy, Elsevier, vol. 252(C).
    16. Zhang, Yu & Tian, Kailan & Li, Xiaomeng & Jiang, Xuemei & Yang, Cuihong, 2022. "From globalization to regionalization? Assessing its potential environmental and economic effects," Applied Energy, Elsevier, vol. 310(C).
    17. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    18. Jindal, Abhinav & Nilakantan, Rahul & Sinha, Avik, 2024. "CO2 emissions abatement costs and drivers for Indian thermal power industry," Energy Policy, Elsevier, vol. 184(C).
    19. Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
    20. Jiang, Lei & He, Shixiong & Zhong, Zhangqi & Zhou, Haifeng & He, Lingyun, 2019. "Revisiting environmental kuznets curve for carbon dioxide emissions: The role of trade," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 245-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03454-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.