IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i6d10.1007_s10668-022-02264-z.html
   My bibliography  Save this article

Spatialization of Chinese R-410A emissions from the room air-conditioning sector

Author

Listed:
  • Pengcheng Wu

    (Sun Yat-Sen University
    Chinese Academy of Environmental Planning)

  • Li Zhang

    (Chinese Academy of Environmental Planning
    University of California Los Angeles)

  • Bo Yao

    (Fudan University)

  • Bofeng Cai

    (Chinese Academy of Environmental Planning)

  • Yifang Zhu

    (University of California Los Angeles)

  • Hui Liu

    (Wuhan University)

  • Pengling Wang

    (National Climate Center)

  • Lisha Liu

    (University of New South Wales)

  • Yanwei Dou

    (China Household Electrical Appliances Association)

  • Han Yan

    (Taikang Asset Management Co., LTD)

  • Yijun Liu

    (Shanghai Jiao Tong University)

  • Zixuan Xie

    (Washington University in St. Louis)

  • Lingyun Pang

    (Chinese Academy of Environmental Planning)

  • Libin Cao

    (Chinese Academy of Environmental Planning)

  • Yimeng Ren

    (Renmin University of China)

  • Xin Bo

    (Beijing University of Chemical Technology)

Abstract

Hydrofluorocarbons (HFCs) are strong greenhouse gases and regulated by the Montreal Protocol as substitutes of ozone depletion substances. Currently, Chinese HFC emissions keep increasing, and the inventory is only on a national or city level. A high-resolution gridded HFC emission inventory is needed to develop HFC reduction policy and phase-down schedule. We developed a method by integrating point sources with longitude and latitude information and area sources using the proxy factor to explore the distribution of R-410A [a mixture of HFC-32 (CH2F2) and HFC-125 (C2HF5)] emissions from the room air-conditioning sector on a 10 × 10 km2 grid scale. Variety of regression models (including the principal component analysis, multiple linear regressions, stepwise regressions, and linear regression), analysis scale (national level and provincial level), and data dimensions (the proxy factor and unit-area value) were tested. The gross domestic product was found as the optimal proxy factor and used to spatialize R-410A emissions at a high-resolution scale. Compared to the national-level analysis, model evaluation parameters were largely improved for the provincial-level regression analysis, including root-mean-square error (from 20.96 to 11.35), normalized mean bias (from 0.16 to − 0.01), normalized mean error (from 0.45 to 0.20), mean absolute error (from 11.27 to 4.97), correlation coefficient (from 0.91 to 0.97), and relative error (from 39% to 76%), suggesting a better performance for the provincial-level analysis. This study provides a cost-effective method to establish fine-resolution HFC inventory. Meanwhile, high-resolution emissions grid data could be further applied to implement site-specific management of low-carbon development.

Suggested Citation

  • Pengcheng Wu & Li Zhang & Bo Yao & Bofeng Cai & Yifang Zhu & Hui Liu & Pengling Wang & Lisha Liu & Yanwei Dou & Han Yan & Yijun Liu & Zixuan Xie & Lingyun Pang & Libin Cao & Yimeng Ren & Xin Bo, 2023. "Spatialization of Chinese R-410A emissions from the room air-conditioning sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5263-5281, June.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02264-z
    DOI: 10.1007/s10668-022-02264-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02264-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02264-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. M. Stanley & D. Say & J. Mühle & C. M. Harth & P. B. Krummel & D. Young & S. J. O’Doherty & P. K. Salameh & P. G. Simmonds & R. F. Weiss & R. G. Prinn & P. J. Fraser & M. Rigby, 2020. "Increase in global emissions of HFC-23 despite near-total expected reductions," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    2. Doll, Christopher N.H. & Pachauri, Shonali, 2010. "Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery," Energy Policy, Elsevier, vol. 38(10), pages 5661-5670, October.
    3. Cai, Bofeng & Zhang, Lixiao, 2014. "Urban CO2 emissions in China: Spatial boundary and performance comparison," Energy Policy, Elsevier, vol. 66(C), pages 557-567.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    2. Ana Andries & Stephen Morse & Richard J. Murphy & Jim Lynch & Emma R. Woolliams, 2019. "Seeing Sustainability from Space: Using Earth Observation Data to Populate the UN Sustainable Development Goal Indicators," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    3. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
    4. Paul Bertheau & Catherina Cader & Hendrik Huyskens & Philipp Blechinger, 2015. "The Influence of Diesel Fuel Subsidies and Taxes on the Potential for Solar-Powered Hybrid Systems in Africa," Resources, MDPI, vol. 4(3), pages 1-19, August.
    5. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    6. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    7. Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
    8. Xiaofeng Lv & Kun Lin & Lingshan Chen & Yongzhong Zhang, 2022. "Does Retirement Affect Household Energy Consumption Structure? Evidence from a Regression Discontinuity Design," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    9. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    10. Heimir Thorisson & James H. Lambert & John J. Cardenas & Igor Linkov, 2017. "Resilience Analytics with Application to Power Grid of a Developing Region," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1268-1286, July.
    11. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    12. Xue, Yan & Hu, Dongmei & Irfan, Muhammad & Wu, Haitao & Hao, Yu, 2023. "Natural resources policy making through finance? The role of green finance on energy resources poverty," Resources Policy, Elsevier, vol. 85(PA).
    13. Qiang Li & Luqi Wei & Ni Zhong & Xiaoming Shi & Donglin Han & Shanyu Zheng & Feihong Du & Junye Shi & Jiangping Chen & Houbing Huang & Chungang Duan & Xiaoshi Qian, 2024. "Low-k nano-dielectrics facilitate electric-field induced phase transition in high-k ferroelectric polymers for sustainable electrocaloric refrigeration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Minde An & Luke M. Western & Daniel Say & Liqu Chen & Tom Claxton & Anita L. Ganesan & Ryan Hossaini & Paul B. Krummel & Alistair J. Manning & Jens Mühle & Simon O’Doherty & Ronald G. Prinn & Ray F. W, 2021. "Rapid increase in dichloromethane emissions from China inferred through atmospheric observations," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Bhanot, Jaya & Jha, Vivek, 2012. "Moving towards tangible decision-making tools for policy makers: Measuring and monitoring energy access provision," Energy Policy, Elsevier, vol. 47(S1), pages 64-70.
    16. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    17. Jian-Zhou Wei & Kai Zheng & Feng Zhang & Chao Fang & Yu-Yu Zhou & Xue-Cao Li & Feng-Min Li & Jian-Sheng Ye, 2019. "Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China’s Loess Plateau," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    18. Xie, Yanhua & Weng, Qihao, 2016. "Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries," Energy, Elsevier, vol. 100(C), pages 177-189.
    19. Nuru, Jude T. & Rhoades, Jason L. & Gruber, James S., 2021. "The socio-technical barriers and strategies for overcoming the barriers to deploying solar mini-grids in rural islands: Evidence from Ghana," Technology in Society, Elsevier, vol. 65(C).
    20. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02264-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.