IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i2d10.1007_s10668-021-02098-1.html
   My bibliography  Save this article

Carbon footprint assessment and mitigation scenarios: a benchmark model for GHG indicator in a Nigerian University

Author

Listed:
  • Damilola Adeyeye

    (University of Ibadan)

  • Adeyemi Olusola

    (University of the Free State
    University of Ibadan)

  • Israel Ropo Orimoloye

    (University of the Free State)

  • Sudhir Kumar Singh

    (University of Allahabad)

  • Samuel Adelabu

    (University of the Free State)

Abstract

A gap in carbon accounting within the global south and particularly in Africa is the unavailability of ordinary emission factors which may be a factor of the unavailability of activity data required to work out emission factors. The purpose of the study is to assess the carbon footprint of one of the oldest universities in West Africa and the oldest in Nigeria, the University of Ibadan. The methodology used for this is the GHG protocol by the World Resources Institute and World Business Council for Sustainable Development framework. The activities of the higher institution as presented in this study still require greater attention in the reduction emission campaign and transitioning to renewable alternative energy. This study reports the emissions on the University of Ibadan campuses that are related to Scopes 1 and 2 (direct and indirect emissions). The total CF is 5,270.952 t/CO2 eq (metric tons of CO2 equivalent), and the CF in Scope 1 and Scope 2 was estimated at 4% and 90%, respectively. Scope 2, which measures indirect emissions generated via purchased electricity, produced the highest contribution of 4,757.83 tCO2e. The activities of higher institutions as presented in this study still require greater attention in the reduction emission campaign. Higher institutions should make a conscious effort to ensure that they are at the forefront in the fight against global warming by looking closely into their activities and ensuring that they limit their carbon emission to the barest minimum.

Suggested Citation

  • Damilola Adeyeye & Adeyemi Olusola & Israel Ropo Orimoloye & Sudhir Kumar Singh & Samuel Adelabu, 2023. "Carbon footprint assessment and mitigation scenarios: a benchmark model for GHG indicator in a Nigerian University," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1361-1382, February.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:2:d:10.1007_s10668-021-02098-1
    DOI: 10.1007/s10668-021-02098-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-02098-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-02098-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnold Tukker & Maurie J. Cohen & Klaus Hubacek & Oksana Mont, 2010. "The Impacts of Household Consumption and Options for Change," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 13-30, January.
    2. Gough, Ian & Abdallah, Saamah & Johnson, Viki & Ryan-Collins, Josh & Smith, Cindy, 2011. "The distribution of total embodied greenhouse gas emissions by households in the UK, and some implications for social policy," LSE Research Online Documents on Economics 36562, London School of Economics and Political Science, LSE Library.
    3. repec:wbk:wboper:13402 is not listed on IDEAS
    4. Giovanni Baiocchi & Jan Minx & Klaus Hubacek, 2010. "The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 50-72, January.
    5. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    6. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    7. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    8. Karan Capoor & Philippe Ambrosi, "undated". "State and Trends of the Carbon Market 2009," World Bank Publications - Reports 13403, The World Bank Group.
    9. repec:cep:sticas:/152 is not listed on IDEAS
    10. Saamah Abdallah & Ian Gough & Victoria Johnson & Josh Ryan-Collins & Cindy Smith, 2011. "The distribution of total greenhouse gas emissions by households in the UK, and some implications for social policy," CASE Papers case152, Centre for Analysis of Social Exclusion, LSE.
    11. Ans Kolk & David Levy & Jonatan Pinkse, 2008. "Corporate Responses in an Emerging Climate Regime: The Institutionalization and Commensuration of Carbon Disclosure," European Accounting Review, Taylor & Francis Journals, vol. 17(4), pages 719-745.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    2. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    3. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    4. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    6. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    7. Olaniyan, Olanrewaju & Sulaimon, Mubaraq Dele & Ademola, Wasiu, 2018. "Determinants of household direct CO2 emissions: Empirical evidence from Nigeria," MPRA Paper 87801, University Library of Munich, Germany.
    8. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    9. Toro, Francisca & Fernández-Vázquez, Esteban & Serrano, Mònica, 2024. "Who brings emissions home? Comparing female and male breadwinner households by matching techniques," Energy Policy, Elsevier, vol. 190(C).
    10. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    11. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    12. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    13. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    14. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    15. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    16. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    17. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
    18. Moises Neil V. Seriño, 2020. "Rising carbon footprint inequality in the Philippines," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 173-195, April.
    19. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    20. Schuster, Antonia & Lindner, Michael & Otto, Ilona M., 2023. "Whose house is on fire? Identifying socio-demographic and housing characteristics driving differences in the UK household CO2 emissions," Ecological Economics, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:2:d:10.1007_s10668-021-02098-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.