IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i1d10.1007_s10668-021-02076-7.html
   My bibliography  Save this article

Drinking water quality assessment based on statistical analysis and three water quality indices (MWQI, IWQI and EWQI): a case study

Author

Listed:
  • Chinanu O. Unigwe

    (Alex Ekwueme Federal University)

  • Johnbosco C. Egbueri

    (Chukwuemeka Odumegwu Ojukwu University)

Abstract

Numerous indicator models have been developed and utilized for the assessment of pollution levels in water resources. In the present study, modified water quality index (MWQI), integrated water quality index (IWQI), and entropy-weighted water quality index (EWQI) were integrated with statistical analysis for the assessment of drinking water quality in Umunya suburban district, Nigeria. There is no known study that has simultaneously compared their performances in water quality research. Overall, the results of this study showed that the water supplies are threatened by heavy metal pollution. The parametric quality rating analysis observed that Pb contamination has the most significant impact on the water supplies. Hierarchical cluster analysis was proved very efficient in the allotment of the possible sources of pollution in the study area. MWQI results classified the water supplies as “marginal”, signifying that they are frequently threatened. Based on the IWQI, 26.67% of the samples are suitable for drinking, 13.33% are acceptable for domestic uses, and 60% are unfit for drinking purposes. Similarly, the EWQI results showed that 60% of the samples are unfit for human consumption, whereas 40% are suitable. Investigation into the performance and sensitivity of the MWQI, IWQI and EWQI models in water quality assessment was analyzed and the results showed that they are all sensitive, efficient and effective tools. This study has indicated that the integration of the three models gives a better understanding of water quality. The excessive concentration of some potentially toxic heavy metals in the water supplies suggests that the contaminated water supplies should be treated before use.

Suggested Citation

  • Chinanu O. Unigwe & Johnbosco C. Egbueri, 2023. "Drinking water quality assessment based on statistical analysis and three water quality indices (MWQI, IWQI and EWQI): a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 686-707, January.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:1:d:10.1007_s10668-021-02076-7
    DOI: 10.1007/s10668-021-02076-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-02076-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-02076-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnbosco C. Egbueri, 2021. "Signatures of contamination, corrosivity and scaling in natural waters from a fast-developing suburb (Nigeria): insights into their suitability for industrial purposes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 591-609, January.
    2. Peiyue Li & Hui Qian, 2018. "Water resources research to support a sustainable China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 327-336, May.
    3. Yan Feng & Yi Fanghui & Chen Li, 2019. "Improved Entropy Weighting Model in Water Quality Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2049-2056, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiying Zhang & Panpan Xu & Hui Qian, 2019. "Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin, China," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    2. Mengtian Lu & Siyu Wang & Xiaoying Wang & Weihong Liao & Chao Wang & Xiaohui Lei & Hao Wang, 2022. "An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China," IJERPH, MDPI, vol. 19(6), pages 1-21, March.
    3. Zida Song & Quan Liu & Zhigen Hu, 2020. "Decision-Making Framework, Enhanced by Mutual Inspection for First-Stage Dam Construction Diversion Scheme Selection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 563-577, January.
    4. Chunci Chen & Guizhen He & Mingzhao Yu, 2023. "Sustainable Watershed Protection from the Public Perspective, China," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    5. Chuansong Zhao & Chunxia Li & Jianxu Liu & Haixia Lian & Woraphon Yamaka, 2024. "Analysis of Factors Affecting the Spatial Association Network of Food Security Level in China," Agriculture, MDPI, vol. 14(11), pages 1-25, October.
    6. Mengdie Zhao & Jinhang Li & Jinliang Zhang & Yuping Han & Runxiang Cao, 2022. "Research on Evaluation Method for Urban Water Circulation Health and Related Applications: A Case Study of Zhengzhou City, Henan Province," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    7. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    8. Xuewen Liang & Yue Pan & Cunwu Li & Weixiong Wu & Xusheng Huang, 2023. "Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    9. Sarami Foroushani, Taraneh & Balali, Hamid & Movahedi, Reza & Partelow, Stefan, 2024. "Using local knowledge to assess the sustainability of groundwater resources: applying the social-ecological systems framework to the Hamedan-Bahar Plain, Iran," EconStor Preprints 289209, ZBW - Leibniz Information Centre for Economics.
    10. Yang Liu & Lijuan Li, 2023. "Multiple Evaluations of the Spatial and Temporal Characteristics of Surface Water Quality in the Typical Area of the Yangtze River Delta of China Using the Water Quality Index and Multivariate Statist," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    11. Zhihui Deng & Qingshan Ma & Jia Zhang & Qingda Feng & Zhaoxuan Niu & Guilin Zhu & Xianpeng Jin & Meijing Chen & Honghan Chen, 2023. "A New Socio-Hydrology System Based on System Dynamics and a SWAT-MODFLOW Coupling Model for Solving Water Resource Management in Nanchang City, China," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    12. Tunis, Sean & Hanna, Eve & Neumann, Peter J. & Toumi, Mondher & Dabbous, Omar & Drummond, Michael & Fricke, Frank-Ulrich & Sullivan, Sean D. & Malone, Daniel C. & Persson, Ulf & Chambers, James D., 2021. "Variation in market access decisions for cell and gene therapies across the United States, Canada, and Europe," Health Policy, Elsevier, vol. 125(12), pages 1550-1556.
    13. Jingjing Xia & Jin Zeng, 2022. "Environmental Factors Assisted the Evaluation of Entropy Water Quality Indices with Efficient Machine Learning Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2045-2060, April.
    14. Yi Ding & Xia Li & Di Wang & Jianming Xu & Yang Yu, 2023. "Study on Spatial and Temporal Differences of Water Resource Sustainable Development and Its Influencing Factors in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    15. Ogechi Lilian Alum & Hillary Onyeka Abugu & Vivian Chinekwu Onwujiogu & Arinze Longinus Ezugwu & Johnbosco C. Egbueri & Chiedozie Chukwuemeka Aralu & Ifeanyi Adolphus Ucheana & Jude Chukwudi Okenwa & , 2023. "Characterization of the Hydrochemistry, Scaling and Corrosivity Tendencies, and Irrigation Suitability of the Water of the Rivers Karawa and Iyiaji," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    16. Yizhen Jia & Han Wang, 2023. "Study on Water Resource Carrying Capacity of Zhengzhou City Based on DPSIR Model," IJERPH, MDPI, vol. 20(2), pages 1-13, January.
    17. Qian Bao & Zhu Yuxin & Wang Yuxiao & Yan Feng, 2020. "Can Entropy Weight Method Correctly Reflect the Distinction of Water Quality Indices?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3667-3674, September.
    18. Shaojian Chen & Yuanyuan Cao & Jun Li, 2021. "The Effect of Water Rights Trading Policy on Water Resource Utilization Efficiency: Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    19. Ammar Ahmed Musa, 2021. "Goal programming model for optimal water allocation of limited resources under increasing demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5956-5984, April.
    20. Vahab Amiri & Nassim Sohrabi & Peiyue Li & Saurabh Shukla, 2023. "Estimation of hydraulic conductivity and porosity of a heterogeneous porous aquifer by combining transition probability geostatistical simulation, geophysical survey, and pumping test data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7713-7736, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:1:d:10.1007_s10668-021-02076-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.