IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i12d10.1007_s10668-022-02665-0.html
   My bibliography  Save this article

Environmental effects of structural change, hydro and coal energy consumption on ecological footprint in India: insights from the novel dynamic ARDL simulation

Author

Listed:
  • Tomiwa Sunday Adebayo

    (Cyprus International University)

  • Seyi Saint Akadiri

    (Central Bank of Nigeria)

  • Mehmet Altuntaş

    (Nisantasi University)

  • Abraham Ayobamiji Awosusi

    (Near East University)

Abstract

This paper examines the impact of structural change, economic growth, hydro energy consumption, and coal energy consumption on ecological footprint, in the case of India. We employ a novel dynamic autoregressive distributed lag (DYNARDL) method to improve the existing studies' limitations and weaknesses. Thus, the current research contributes empirically and methodological to the literature. The study used the newly proposed DYNARDL simulation method and frequency domain causality using data from 1970–2017 to inspect the impact of structural change, economic growth, hydro energy consumption, and coal energy consumption on ecological footprint in the case of India. Empirical results reveal that institutional structural change decreases ecological footprint in the short and long term, whereas hydropower usage decreases ecological footprint only in the long term. Conversely, economic growth positively affects ecological footprint in both the short and long term. Likewise, coal energy usage increases ecological footprint in the long term. In addition, the findings confirm the validity of the environment Kuznets curve (EKC) hypothesis in India. Furthermore, the results of the frequency domain causality test revealed that structural change, hydro-energy usage, and coal consumption could predict ecological footprint in the long term. In contrast, economic growth can predict the medium- and long-term ecological footprint. We observed that as India's production level continues to surge, so does environmental deterioration, which is associated with the scale effect.

Suggested Citation

  • Tomiwa Sunday Adebayo & Seyi Saint Akadiri & Mehmet Altuntaş & Abraham Ayobamiji Awosusi, 2023. "Environmental effects of structural change, hydro and coal energy consumption on ecological footprint in India: insights from the novel dynamic ARDL simulation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14309-14332, December.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02665-0
    DOI: 10.1007/s10668-022-02665-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02665-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02665-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    2. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    3. Shan, Shan & Ahmad, Munir & Tan, Zhixiong & Adebayo, Tomiwa Sunday & Man Li, Rita Yi & Kirikkaleli, Dervis, 2021. "The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability," Energy, Elsevier, vol. 234(C).
    4. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.
    5. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    6. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    7. Ahmad, Mahmood & Jiang, Ping & Majeed, Abdul & Umar, Muhammad & Khan, Zeeshan & Muhammad, Sulaman, 2020. "The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation," Resources Policy, Elsevier, vol. 69(C).
    8. Syrquin, Moshe, 1988. "Patterns of structural change," Handbook of Development Economics, in: Hollis Chenery & T.N. Srinivasan (ed.), Handbook of Development Economics, edition 1, volume 1, chapter 7, pages 203-273, Elsevier.
    9. Wajahat Ali & Inam Ur Rahman & Muhammad Zahid & Muhammad Anees Khan & Tafazal Kumail, 2020. "Do technology and structural changes favour environment in Malaysia: an ARDL-based evidence for environmental Kuznets curve," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7927-7950, December.
    10. Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji & Bekun, Festus Victor & Altuntaş, Mehmet, 2021. "Coal energy consumption beat renewable energy consumption in South Africa: Developing policy framework for sustainable development," Renewable Energy, Elsevier, vol. 175(C), pages 1012-1024.
    11. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).
    12. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    13. Soren Jordan & Andrew Q. Philips, 2018. "Cointegration testing and dynamic simulations of autoregressive distributed lag modelsJournal: Stata Journal," Stata Journal, StataCorp LLC, vol. 18(4), pages 902-923, December.
    14. Awosusi Abraham Ayobamiji & Demet Beton Kalmaz, 2020. "Reinvestigating the determinants of environmental degradation in Nigeria," International Journal of Economic Policy in Emerging Economies, Inderscience Enterprises Ltd, vol. 13(1), pages 52-71.
    15. Abbasi, Kashif Raza & Adedoyin, Festus Fatai & Abbas, Jaffar & Hussain, Khadim, 2021. "The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation," Renewable Energy, Elsevier, vol. 180(C), pages 1439-1450.
    16. Dervis Kirikkaleli & Tomiwa Sunday Adebayo, 2021. "Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 583-594, July.
    17. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    18. Miao, Yang & Razzaq, Asif & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Do renewable energy consumption and financial globalisation contribute to ecological sustainability in newly industrialized countries?," Renewable Energy, Elsevier, vol. 187(C), pages 688-697.
    19. Shahbaz, Muhammad & Sharma, Rajesh & Sinha, Avik & Jiao, Zhilun, 2021. "Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India," Energy Policy, Elsevier, vol. 148(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abraham Ayobamiji Awosusi & Kaan Kutlay & Mehmet Altuntaş & Bakhtiyor Khodjiev & Ephraim Bonah Agyekum & Mokhtar Shouran & Mohamed Elgbaily & Salah Kamel, 2022. "A Roadmap toward Achieving Sustainable Environment: Evaluating the Impact of Technological Innovation and Globalization on Load Capacity Factor," IJERPH, MDPI, vol. 19(6), pages 1-16, March.
    2. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    3. Soumen Rej & Barnali Nag & Md. Emran Hossain, 2022. "Can Renewable Energy and Export Help in Reducing Ecological Footprint of India? Empirical Evidence from Augmented ARDL Co-Integration and Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    4. Jiangling Yu & Feng Ju & Muhammad Wahab & Ephraim Bonah Agyekum & Clement Matasane & Solomon Eghosa Uhunamure, 2022. "Estimating the Effects of Economic Complexity and Technological Innovations on CO 2 Emissions: Policy Instruments for N-11 Countries," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    5. Mário Nuno Mata & Seun Damola Oladipupo & Rjoub Husam & Joaquim António Ferrão & Mehmet Altuntaş & Jéssica Nunes Martins & Dervis Kirikkaleli & Rui Miguel Dantas & António Morão Lourenço, 2021. "Another Look into the Relationship between Economic Growth, Carbon Emissions, Agriculture and Urbanization in Thailand: A Frequency Domain Analysis," Energies, MDPI, vol. 14(16), pages 1-12, August.
    6. Tomiwa Sunday Adebayo & Seun Damola Oladipupo & Husam Rjoub & Dervis Kirikkaleli & Ibrahim Adeshola, 2023. "Asymmetric effect of structural change and renewable energy consumption on carbon emissions: designing an SDG framework for Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 528-556, January.
    7. Md. Emran Hossain & Soumen Rej & Sourav Mohan Saha & Joshua Chukwuma Onwe & Nnamdi Nwulu & Festus Victor Bekun & Amjad Taha, 2022. "Can Energy Efficiency Help in Achieving Carbon-Neutrality Pledges? A Developing Country Perspective Using Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    8. Hossain, Mohammad Razib & Rej, Soumen & Awan, Ashar & Bandyopadhyay, Arunava & Islam, Md Sayemul & Das, Narasingha & Hossain, Md Emran, 2023. "Natural resource dependency and environmental sustainability under N-shaped EKC: The curious case of India," Resources Policy, Elsevier, vol. 80(C).
    9. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    10. Tunahan Hacıimamoğlu & Oğuzhan Sungur, 2024. "How Do Economic Growth, Renewable Energy Consumption, and Political Stability Affect Environmental Sustainability in the United States? Insights from a Modified Ecological Footprint Model," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 20649-20676, December.
    11. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    12. Maxwell Chukwudi Udeagha & Marthinus Christoffel Breitenbach, 2023. "Revisiting the nexus between fiscal decentralization and CO2 emissions in South Africa: fresh policy insights," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-46, December.
    13. Cankun Ma & Md. Qamruzzaman, 2022. "An Asymmetric Nexus between Urbanization and Technological Innovation and Environmental Sustainability in Ethiopia and Egypt: What Is the Role of Renewable Energy?," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    14. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    15. Maxwell Chukwudi Udeagha & Marthinus Christoffel Breitenbach, 2023. "The Role of Fiscal Decentralization in Limiting CO2 Emissions in South Africa," Biophysical Economics and Resource Quality, Springer, vol. 8(3), pages 1-30, September.
    16. Wei, Shuxin & Wei, Wenshan & Umut, Alican, 2023. "Do renewable energy consumption, technological innovation, and international integration enhance environmental sustainability in Brazil?," Renewable Energy, Elsevier, vol. 202(C), pages 172-183.
    17. Abbasi, Kashif Raza & Hussain, Khadim & Haddad, Akram Masoud & Salman, Asma & Ozturk, Ilhan, 2022. "The role of Financial Development and Technological Innovation towards Sustainable Development in Pakistan: Fresh insights from consumption and territory-based emissions," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    18. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    19. Ullah, Sami & Lin, Boqiang, 2024. "Harnessing the synergistic impacts of financial structure, industrialization, and ecological footprint through the lens of the EKC hypothesis. Insights from Pakistan," Energy, Elsevier, vol. 307(C).
    20. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02665-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.