IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16856-d1004634.html
   My bibliography  Save this article

Estimating the Effects of Economic Complexity and Technological Innovations on CO 2 Emissions: Policy Instruments for N-11 Countries

Author

Listed:
  • Jiangling Yu

    (MBA Education Center, School of Management, Shandong University of Technology, Zibo 255000, China)

  • Feng Ju

    (School of Business Management, Weifang Vocational College, Weifang 261000, China)

  • Muhammad Wahab

    (Department of Computer Science, The Government College University, Faisalabad 38000, Pakistan)

  • Ephraim Bonah Agyekum

    (Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, 19 Mira Street, 620002 Ekaterinburg, Russia)

  • Clement Matasane

    (Faculty of Engineering and Built Environment, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa)

  • Solomon Eghosa Uhunamure

    (Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa)

Abstract

Every year, the problem of environmental degradation becomes more severe globally. It is widely believed that technological innovation and economic complexity are understood as structural transformations toward a more sophisticated and knowledge-based means of production as a viable way to fight against climate change. However, the studies integrating these two elements into the same environmental policy framework are still scant. With this in view, this study investigates the dynamic linkage between economic complexity, technological innovations, economic growth, and nonrenewable energy on CO 2 emissions in the N-11 nations. This study uses data from 1980 to 2020. It applies the recent method of cross-sectional autoregressive distributed lags (CS-ARDL). The cointegration method shows a strong association among the variables. The findings of the CS-ARDL show that technological innovations are negatively related to environmental degradation, while nonrenewable energy deteriorates the environment by escalating CO 2 emissions. This study fails to validate the EKC in the N-11 nations. In addition, economic complexity is helping these economies to achieve environmental sustainability by lowering environmental pollution. Based on the findings, this work recommends that the N-11 countries restructure their industrial sectors with low-carbon energy sources. For this purpose, these countries should increase their research and development budgets. This will help in launching environmentally friendly energy sources in their economic development model.

Suggested Citation

  • Jiangling Yu & Feng Ju & Muhammad Wahab & Ephraim Bonah Agyekum & Clement Matasane & Solomon Eghosa Uhunamure, 2022. "Estimating the Effects of Economic Complexity and Technological Innovations on CO 2 Emissions: Policy Instruments for N-11 Countries," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16856-:d:1004634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bashir, Muhammad Farhan & MA, Benjiang & Hussain, Hafezali Iqbal & Shahbaz, Muhammad & Koca, Kemal & Shahzadi, Irum, 2022. "Evaluating environmental commitments to COP21 and the role of economic complexity, renewable energy, financial development, urbanization, and energy innovation: Empirical evidence from the RCEP countr," Renewable Energy, Elsevier, vol. 184(C), pages 541-550.
    2. Miao, Yang & Razzaq, Asif & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Do renewable energy consumption and financial globalisation contribute to ecological sustainability in newly industrialized countries?," Renewable Energy, Elsevier, vol. 187(C), pages 688-697.
    3. Lotfalipour, Mohammad Reza & Falahi, Mohammad Ali & Ashena, Malihe, 2010. "Economic growth, CO2 emissions, and fossil fuels consumption in Iran," Energy, Elsevier, vol. 35(12), pages 5115-5120.
    4. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    5. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    6. Dervis Kirikkaleli & Tomiwa Sunday Adebayo, 2021. "Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 583-594, July.
    7. Ahmed Samour & M. Mine Baskaya & Turgut Tursoy, 2022. "The Impact of Financial Development and FDI on Renewable Energy in the UAE: A Path towards Sustainable Development," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
    8. Ibrahim D. Raheem & Aviral K. Tiwari & Daniel Balsalobre-lorente, 2019. "The Role of ICT and Financial Development on CO2 Emissions and Economic Growth," Working Papers of the African Governance and Development Institute. 19/058, African Governance and Development Institute..
    9. Kaufmann, Robert K. & Davidsdottir, Brynhildur & Garnham, Sophie & Pauly, Peter, 1998. "The determinants of atmospheric SO2 concentrations: reconsidering the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 25(2), pages 209-220, May.
    10. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    11. Shahbaz, Muhammad & Sharma, Rajesh & Sinha, Avik & Jiao, Zhilun, 2021. "Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India," Energy Policy, Elsevier, vol. 148(PB).
    12. Mohammed Abumunshar & Mehmet Aga & Ahmed Samour, 2020. "Oil Price, Energy Consumption, and CO 2 Emissions in Turkey. New Evidence from a Bootstrap ARDL Test," Energies, MDPI, vol. 13(21), pages 1-15, October.
    13. Hanif, Imran & Faraz Raza, Syed Muhammad & Gago-de-Santos, Pilar & Abbas, Qaiser, 2019. "Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence," Energy, Elsevier, vol. 171(C), pages 493-501.
    14. Buhari Doğan & Oana M. Driha & Daniel Balsalobre Lorente & Umer Shahzad, 2021. "The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 1-12, January.
    15. Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2021. "Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: application of wavelet tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16057-16082, November.
    16. Wajahat Ali & Inam Ur Rahman & Muhammad Zahid & Muhammad Anees Khan & Tafazal Kumail, 2020. "Do technology and structural changes favour environment in Malaysia: an ARDL-based evidence for environmental Kuznets curve," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7927-7950, December.
    17. Joakim Westerlund, 2005. "New Simple Tests for Panel Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 297-316.
    18. Markus Eberhardt & Francis Teal, 2020. "The Magnitude of the Task Ahead: Macro Implications of Heterogeneous Technology," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(2), pages 334-360, June.
    19. Husam Rjoub & Jamiu Adetola Odugbesan & Tomiwa Sunday Adebayo & Wing-Keung Wong, 2021. "Sustainability of the Moderating Role of Financial Development in the Determinants of Environmental Degradation: Evidence from Turkey," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    20. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    21. Sadeghi, Pegah & Shahrestani, Hamid & Kiani, Kambiz Hojabr & Torabi, Taghi, 2020. "Economic complexity, human capital, and FDI attraction: A cross country analysis," International Economics, Elsevier, vol. 164(C), pages 168-182.
    22. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).
    23. Jahanger, Atif & Usman, Muhammad & Murshed, Muntasir & Mahmood, Haider & Balsalobre-Lorente, Daniel, 2022. "The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations," Resources Policy, Elsevier, vol. 76(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osinubi Tolulope Temilola, 2024. "Does Economic Complexity Influence Carbon Emissions? Evidence from Next Eleven Countries," Economics and Culture, Sciendo, vol. 21(1), pages 64-76.
    2. Hugo Algarvio, 2023. "The Economic Sustainability of Variable Renewable Energy Considering the Negotiation of Different Support Schemes," Sustainability, MDPI, vol. 15(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usman Mehmood, 2024. "Analyzing the Role of Political Risk, GDP, and Eco-Innovations Towards CO2 Emissions in South Asian Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 2121-2135, March.
    2. Rafei, Meysam & Esmaeili, Parisa & Balsalobre-Lorente, Daniel, 2022. "A step towards environmental mitigation: How do economic complexity and natural resources matter? Focusing on different institutional quality level countries," Resources Policy, Elsevier, vol. 78(C).
    3. Sun, Yunpeng & Tian, Wenjuan & Mehmood, Usman & Zhang, Xiaoyu & Tariq, Salman, 2023. "How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries?," Resources Policy, Elsevier, vol. 85(PA).
    4. Bashir, Muhammad Adnan & Dengfeng, Zhao & Filipiak, Beata Zofia & Bilan, Yuriy & Vasa, László, 2023. "Role of economic complexity and technological innovation for ecological footprint in newly industrialized countries: Does geothermal energy consumption matter?," Renewable Energy, Elsevier, vol. 217(C).
    5. Usman Mehmood & Ephraim Bonah Agyekum & Hossam Kotb & Ahmad H. Milyani & Abdullah Ahmed Azhari & Salman Tariq & Zia ul Haq & Arif Ullah & Kashif Raza & Vladimir Ivanovich Velkin, 2022. "Exploring the Role of Communication Technologies, Governance, and Renewable Energy for Ecological Footprints in G11 Countries: Implications for Sustainable Development," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    6. Brantley Liddle & Fakhri Hasanov, 2022. "Industry electricity price and output elasticities for high-income and middle-income countries," Empirical Economics, Springer, vol. 62(3), pages 1293-1319, March.
    7. Chu, Lan Khanh & Ghosh, Sudeshna & Doğan, Buhari & Nguyen, Nam Hoai & Shahbaz, Muhammad, 2023. "Energy security as new determinant of renewable energy: The role of economic complexity in top energy users," Energy, Elsevier, vol. 263(PC).
    8. Obiakor, Rowland Tochukwu & Uche, Emmanuel & Das, Narasingha, 2022. "Is structural innovativeness a panacea for healthier environments? Evidence from developing countries," Technology in Society, Elsevier, vol. 70(C).
    9. Chen, Jie & Huang, Shoujun & Kamran, Hafiz Waqas, 2023. "Empowering sustainability practices through energy transition for sustainable development goal 7: The role of energy patents and natural resources among European Union economies through advanced panel," Energy Policy, Elsevier, vol. 176(C).
    10. Luo, Shunjun & Mabrouk, Fatma, 2022. "Nexus between natural resources, globalization and ecological sustainability in resource-rich countries: Dynamic role of green technology and environmental regulation," Resources Policy, Elsevier, vol. 79(C).
    11. Shang, Yunfeng & Razzaq, Asif & Chupradit, Supat & Binh An, Nguyen & Abdul-Samad, Zulkiflee, 2022. "The role of renewable energy consumption and health expenditures in improving load capacity factor in ASEAN countries: Exploring new paradigm using advance panel models," Renewable Energy, Elsevier, vol. 191(C), pages 715-722.
    12. Guo, Xiuping & Meng, Xianglei & Luan, Qingfeng & Wang, Yanhua, 2023. "Trade openness, globalization, and natural resources management: The moderating role of economic complexity in newly industrialized countries," Resources Policy, Elsevier, vol. 85(PA).
    13. Zhou, Long & Alharthi, Majed & Aziz, Babar & Kok, Shiau Hui & Wasim, Sarah & Dong, Xiaohong, 2024. "Illuminating the contributions of fintech, mineral resources, and foreign direct investment in alleviating environmental issues: An empirical analysis," Resources Policy, Elsevier, vol. 89(C).
    14. Deng, Qiu Shi & Alvarado, Rafael & Cuesta, Lizeth & Tillaguango, Brayan & Murshed, Muntasir & Rehman, Abdul & Işık, Cem & López-Sánchez, Michelle, 2022. "Asymmetric impacts of foreign direct investment inflows, financial development, and social globalization on environmental pollution," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 236-251.
    15. Xia, Aiming & Liu, Qing, 2024. "Modelling the asymmetric impact of fintech, natural resources, and environmental regulations on ecological footprint in G7 countries," Resources Policy, Elsevier, vol. 89(C).
    16. Zhao, Xinlu & Adebayo, Tomiwa Sunday & Kong, Xianli & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Relating energy innovations and natural resources as determinants of environmental sustainability: The role of globalization in G7 countries," Resources Policy, Elsevier, vol. 79(C).
    17. Simionescu, Mihaela & Radulescu, Magdalena & Cifuentes-Faura, Javier & Balsalobre-Lorente, Daniel, 2023. "The role of renewable energy policies in TACKLING energy poverty in the European UNION," Energy Policy, Elsevier, vol. 183(C).
    18. Meng, Yue & Wu, Haoyue & Wang, Yunchen & Duan, Yinying, 2022. "International trade diversification, green innovation, and consumption-based carbon emissions: The role of renewable energy for sustainable development in BRICST countries," Renewable Energy, Elsevier, vol. 198(C), pages 1243-1253.
    19. Aytun, Cengiz & Erdogan, Sinan & Pata, Ugur Korkut & Cengiz, Orhan, 2024. "Associating environmental quality, human capital, financial development and technological innovation in 19 middle-income countries: A disaggregated ecological footprint approach," Technology in Society, Elsevier, vol. 76(C).
    20. Li, Tianqun & Chen, Yuhan & Zhou, Liangxiao, 2023. "Impact of trade, technology, and tourism on resources depletion across Belt and Road Node countries," Resources Policy, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16856-:d:1004634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.