IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i11d10.1007_s10668-022-02615-w.html
   My bibliography  Save this article

Impacts of environmental regulation on innovation in the context of the Internet

Author

Listed:
  • Yuanbin Xu

    (Jiangxi University of Finance and Economics)

  • Haiqing Yu

    (Jiangxi University of Finance and Economics
    Jiangxi Information Center)

  • Xin Zeng

    (Jiangxi University of Finance and Economics)

  • Xinmin Zhang

    (Jiangxi University of Finance and Economics)

Abstract

The relationship between environmental regulation and innovation has long been a key issue of scholarly interest. The Porter hypothesis posits that environmental regulations can effectively promote innovation. However, with the rapid development of the Internet, the relationship between environmental regulation and innovation has changed. Through a theoretical analysis, this paper finds that the development of the Internet can not only directly promote innovation but also inhibit innovation through environmental regulations. This paper uses Chinese city-level data from 2014 to 2016 to empirically test the relationship among the Internet, environmental regulation, and innovation. The study finds that (1) the increase in the Internet level and in the intensity of environmental regulations promotes innovation, and the results remain stable after the replacement of the Internet level metrics, (2) the increase in the Internet level inhibits the positive effect of environmental regulations on innovation, but its inhibitory effect is lower than the promotion effect of the Internet on innovation, and (3) the Internet and environmental regulations have a significant promotion effect on the application and acquisition of three types of patents, including invention patents, utility model patents and design patents, with the application and acquisition of utility model patents having the greatest promotion effect, and (4) the analysis of heterogeneity shows that environmental regulation has a greater effect on innovation in eastern and provincial capital cities, and the Internet has a greater effect on innovation in western and nonprovincial capital cities. Finally, this article puts forward policy recommendations based on three aspects: strengthening Internet construction, implementing environmental regulations and policies based on local conditions, and increasing support for R&D and innovation.

Suggested Citation

  • Yuanbin Xu & Haiqing Yu & Xin Zeng & Xinmin Zhang, 2023. "Impacts of environmental regulation on innovation in the context of the Internet," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13281-13303, November.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02615-w
    DOI: 10.1007/s10668-022-02615-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02615-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02615-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bendik Bygstad & Hans-Petter Aanby, 2010. "ICT infrastructure for innovation: A case study of the enterprise service bus approach," Information Systems Frontiers, Springer, vol. 12(3), pages 257-265, July.
    2. Ajay Agrawal & Avi Goldfarb, 2008. "Restructuring Research: Communication Costs and the Democratization of University Innovation," American Economic Review, American Economic Association, vol. 98(4), pages 1578-1590, September.
    3. Lars-Hendrik Roller & Leonard Waverman, 2001. "Telecommunications Infrastructure and Economic Development: A Simultaneous Approach," American Economic Review, American Economic Association, vol. 91(4), pages 909-923, September.
    4. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    5. Gray, Wayne B. & Shadbegian, Ronald J., 2003. "Plant vintage, technology, and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 384-402, November.
    6. Michael Greenstone & John A. List & Chad Syverson, 2011. "The Effects of Environmental Regulation on the Competiveness of U.S. Manufacturing," Working Papers 11-03, Center for Economic Studies, U.S. Census Bureau.
    7. James D. Dana Jr. & Eugene Orlov Jr., 2014. "Internet Penetration and Capacity Utilization in the US Airline Industry," American Economic Journal: Microeconomics, American Economic Association, vol. 6(4), pages 106-137, November.
    8. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    9. Becker, Randy A., 2011. "Local environmental regulation and plant-level productivity," Ecological Economics, Elsevier, vol. 70(12), pages 2516-2522.
    10. Shadbegian, Ronald J. & Gray, Wayne B., 2005. "Pollution abatement expenditures and plant-level productivity: A production function approach," Ecological Economics, Elsevier, vol. 54(2-3), pages 196-208, August.
    11. Becker, Randy A., 2011. "Local environmental regulation and plant-level productivity," Ecological Economics, Elsevier, vol. 70(12), pages 2516-2522.
    12. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
    13. B. K. Atrostic & Sang V. Nguyen, 2005. "It and Productivity in U.S. Manufacturing: Do Computer Networks Matter?," Economic Inquiry, Western Economic Association International, vol. 43(3), pages 493-506, July.
    14. Wilson, Daniel J., 2009. "IT and Beyond: The Contribution of Heterogeneous Capital to Productivity," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 52-70.
    15. Koellinger, Philipp, 2008. "The relationship between technology, innovation, and firm performance--Empirical evidence from e-business in Europe," Research Policy, Elsevier, vol. 37(8), pages 1317-1328, September.
    16. Hancevic, Pedro Ignacio, 2016. "Environmental regulation and productivity: The case of electricity generation under the CAAA-1990," Energy Economics, Elsevier, vol. 60(C), pages 131-143.
    17. Henkel, Joachim, 2006. "Selective revealing in open innovation processes: The case of embedded Linux," Research Policy, Elsevier, vol. 35(7), pages 953-969, September.
    18. Josh Lerner & Parag A. Pathak & Jean Tirole, 2006. "The Dynamics of Open-Source Contributors," American Economic Review, American Economic Association, vol. 96(2), pages 114-118, May.
    19. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    20. Shahiduzzaman, Md. & Alam, Khorshed, 2014. "Information technology and its changing roles to economic growth and productivity in Australia," Telecommunications Policy, Elsevier, vol. 38(2), pages 125-135.
    21. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mian Yang & Yining Yuan & Fuxia Yang & Dalia Patino-Echeverri, 2021. "Effects of environmental regulation on firm entry and exit and China’s industrial productivity: a new perspective on the Porter Hypothesis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 915-944, October.
    2. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    3. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    4. Huang, Youxing & Xu, Qi & Zhao, Yanping, 2021. "Short-run pain, long-run gain: Desulfurization investment and productivity," Energy Economics, Elsevier, vol. 102(C).
    5. Johan Brolund & Robert Lundmark, 2017. "Effect of Environmental Regulation Stringency on the Pulp and Paper Industry," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    6. Becker, Randy A. & Pasurka, Carl & Shadbegian, Ronald J., 2013. "Do environmental regulations disproportionately affect small businesses? Evidence from the Pollution Abatement Costs and Expenditures survey," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 523-538.
    7. Ailian Zhang & Mengmeng Pan, 2020. "“Smart Process” of Medical Innovation: The Synergism Based on Network and Physical Space," IJERPH, MDPI, vol. 17(11), pages 1-17, May.
    8. Becker, Randy A. & Pasurka, Carl & Shadbegian, Ronald J., 2013. "Do environmental regulations disproportionately affect small businesses? Evidence from the Pollution Abatement Costs and Expenditures survey," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 523-538.
    9. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    10. Peng, Jiaying & Xie, Rui & Ma, Chunbo & Fu, Yang, 2021. "Market-based environmental regulation and total factor productivity: Evidence from Chinese enterprises," Economic Modelling, Elsevier, vol. 95(C), pages 394-407.
    11. Yao, Shiyue & Yu, Xueying & Yan, Sen & Wen, Shiyan, 2021. "Heterogeneous emission trading schemes and green innovation," Energy Policy, Elsevier, vol. 155(C).
    12. Guo, Shu & Zhang, ZhongXiang, 2023. "Green credit policy and total factor productivity: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 128(C).
    13. Themann, Michael & Koch, Nicolas, 2021. "Catching up and falling behind: Cross-country evidence on the impact of the EU ETS on firm productivity," Ruhr Economic Papers 904, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Phu Nguyen-Van & Tuyen Tiet & Quoc Tran-Nam, 2024. "Synergy in environmental compliance, innovation and export on SMEs' growth," Working Papers hal-04441426, HAL.
    15. Maogang Tang & Silu Cheng & Wenqing Guo & Weibiao Ma & Fengxia Hu, 2023. "Relationship between carbon emission trading schemes and companies’ total factor productivity: evidence from listed companies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11735-11767, October.
    16. Pedro Naso & Yi Huang Author Name: Tim Swanson, 2017. "The Porter Hypothesis Goes to China: Spatial Development, Environmental Regulation and Productivity," CIES Research Paper series 53-2017, Centre for International Environmental Studies, The Graduate Institute.
    17. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    18. Sangeeta Bansal & Massimo Filippini & Suchita Srinivasan, 2023. "How Regulation Might Fail to Reduce Energy Consumption While Still Stimulating Total Factor Productivity Growth," CER-ETH Economics working paper series 23/379, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    19. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
    20. Rassier, Dylan G. & Earnhart, Dietrich, 2015. "Effects of environmental regulation on actual and expected profitability," Ecological Economics, Elsevier, vol. 112(C), pages 129-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02615-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.