IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i8d10.1007_s10668-021-01852-9.html
   My bibliography  Save this article

Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites

Author

Listed:
  • Krishnavani Pavalaydon

    (University of Mauritius)

  • Hareenanden Ramasawmy

    (University of Mauritius)

  • Dinesh Surroop

    (University of Mauritius)

Abstract

In order to increase resilience of planters against climate change and bring additional economic benefits, agro-wastes can be exploited for extracting nanocellulose to produce eco-friendly composites. This paper focused on extracting nanocellulose from sugarcane bagasse and coir (cocos nucifera) using chemical methods including mercerisation, bleaching and acid hydrolysis. Taguchi Design of Experiment showed that the optimum alkaline treatment conditions of bagasse were at 2 wt% NaOH at 90 °C for 16 h. The morphological changes occurring along each treatment stage were observed using Fourier-Transform Infrared spectroscopy and Scanning Electron Microscopy. The differences in the nanoparticles extracted from the two biomass were studied through the determination of crystallinity indexes and particle size. Cellulose nanocrystals (CNCs) from coir exhibited a total crystallinity index (TCI) of 1.03 and an average particle size of 137.3 nm while CNCs extracted from sugarcane bagasse under similar treatment conditions had a TCI of 0.85 and an average particle size of around 48 µm. Dynamic Light Scattering findings showed risks of agglomeration after freeze drying. Bio-nanocomposite films with polyvinyl alcohol (PVA) as matrix were manufactured by the solvent casting process. The highest tensile strength (38.2 MPa) was obtained for CNCs extracted from coir at a CNC/PVA loading of 0.5 wt%, representing a 96.9% increase in the tensile strength as compared to the unreinforced PVA matrix. This study showed that sugarcane bagasse and coir are suitable sources of nanocellulose and can be used to prepare bio-composites with considerably high tensile strengths.

Suggested Citation

  • Krishnavani Pavalaydon & Hareenanden Ramasawmy & Dinesh Surroop, 2022. "Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9963-9984, August.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01852-9
    DOI: 10.1007/s10668-021-01852-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01852-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01852-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Edelira Velázquez & Omayra Beatriz Ferreiro & Diego Batista Menezes & Yendry Corrales-Ureña & José Roberto Vega-Baudrit & Juan Daniel Rivaldi, 2022. "Nanocellulose Extracted from Paraguayan Residual Agro-Industrial Biomass: Extraction Process, Physicochemical and Morphological Characterization," Sustainability, MDPI, vol. 14(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Chen, Wei-Hsin & Lo, Hsiu-Ju & Aniza, Ria & Lin, Bo-Jhih & Park, Young-Kwon & Kwon, Eilhann E. & Sheen, Herng-Kuang & Grafilo, Laumar Alan Dave R., 2022. "Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree," Applied Energy, Elsevier, vol. 324(C).
    3. Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    5. Huang, Caoxing & Jiang, Xiao & Shen, Xiaojun & Hu, Jinguang & Tang, Wei & Wu, Xinxing & Ragauskas, Arthur & Jameel, Hasan & Meng, Xianzhi & Yong, Qiang, 2022. "Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Ni, Liangmeng & Feng, Zixing & Zhang, Tao & Gao, Qi & Hou, Yanmei & He, Yuyu & Su, Mengfu & Ren, Hao & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process," Renewable Energy, Elsevier, vol. 197(C), pages 257-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01852-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.