IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00827-6.html
   My bibliography  Save this article

Sensitivity analysis of artificial neural network for chlorophyll prediction using hyperspectral data

Author

Listed:
  • Prashant K. Srivastava

    (Banaras Hindu University
    Banaras Hindu University)

  • Manika Gupta

    (University of Delhi)

  • Ujjwal Singh

    (Banaras Hindu University)

  • Rajendra Prasad

    (IIT (BHU))

  • Prem Chandra Pandey

    (Shiv Nadar University)

  • A. S. Raghubanshi

    (Banaras Hindu University)

  • George P. Petropoulos

    (Harokopio University of Athens)

Abstract

Hyperspectral acquisition provides the spectral response in narrow and continuous spectral channel. The high number of contiguous bands in hyperspectral remote sensing provides significant improvements in assessing subtle changes as compared to the multispectral satellite datasets in context of spectral resolution. Therefore, the main goal of the present research is to evaluate the sensitivity of the artificial neural networks (ANNs) for chlorophyll prediction in the winter wheat crop using different hyperspectral spectral indices. For evaluating relative variable significance in the study, the Olden’s function has been applied. The Lek’s profile method is used for sensitivity analysis of ANNs for chlorophyll prediction using the vegetation indices such as Red Edge Inflection Point (REIP), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and Structure-Insensitive Pigment Index (SIPI) derived from hyperspectral radiometer. The analysis indicates a high sensitivity of SAVI followed by NDVI, REIP and SIPI for chlorophyll retrieval using ANNs. The statistical performance indices obtained from calibration (RMSE = 0.27; index of agreement = 0.96) and validation (RMSE = 0.66; index of agreement = 0.83) suggested that the ANN model is appropriate for chlorophyll prediction with good efficiency. The outcome of this work can be used by upcoming hyperspectral missions such as Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and Hyperspectral Infrared Imager (HyspIRI) for large-scale estimation of chlorophyll and could help in the real-time monitoring of crop health status.

Suggested Citation

  • Prashant K. Srivastava & Manika Gupta & Ujjwal Singh & Rajendra Prasad & Prem Chandra Pandey & A. S. Raghubanshi & George P. Petropoulos, 2021. "Sensitivity analysis of artificial neural network for chlorophyll prediction using hyperspectral data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5504-5519, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00827-6
    DOI: 10.1007/s10668-020-00827-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00827-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00827-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    2. Tian, Wenchong & Liao, Zhenliang & Zhang, Jin, 2017. "An optimization of artificial neural network model for predicting chlorophyll dynamics," Ecological Modelling, Elsevier, vol. 364(C), pages 42-52.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. Prashant Srivastava & Dawei Han & Miguel Rico-Ramirez & Deleen Al-Shrafany & Tanvir Islam, 2013. "Data Fusion Techniques for Improving Soil Moisture Deficit Using SMOS Satellite and WRF-NOAH Land Surface Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5069-5087, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Shi & Junyu Zhao & Xianchong Song & Zuoyu Qin & Lichao Wu & Huili Wang & Jian Tang, 2021. "Hyperspectral band selection and modeling of soil organic matter content in a forest using the Ranger algorithm," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakhwinder Pal Singh & Ravi Teja Challa, 2016. "Integrated Forecasting Using the Discrete Wavelet Theory and Artificial Intelligence Techniques to Reduce the Bullwhip Effect in a Supply Chain," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 17(2), pages 157-169, June.
    2. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    3. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    4. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    5. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    6. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    7. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    8. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    9. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    10. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    11. Xuan Wang & Wenchong Tian & Zhenliang Liao, 2022. "Framework for Hyperparameter Impact Analysis and Selection for Water Resources Feedforward Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4201-4217, September.
    12. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    13. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    14. Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
    15. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    16. CIOBANU Dumitru & BAR Mary Violeta, 2013. "On The Prediction Of Exchange Rate Dollar/Euro With An Svm Model," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 65(2), pages 91-109.
    17. Chenghao Zhong & Wengao Lou & Yongzeng Lai, 2023. "A Projection Pursuit Dynamic Cluster Model for Tourism Safety Early Warning and Its Implications for Sustainable Tourism," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    18. Nastac, Iulian & Dobrescu, Emilian & Pelinescu, Elena, 2007. "Neuro-Adaptive Model for Financial Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 4(3), pages 19-41, September.
    19. Joo, Rocío & Bertrand, Sophie & Chaigneau, Alexis & Ñiquen, Miguel, 2011. "Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery," Ecological Modelling, Elsevier, vol. 222(4), pages 1048-1059.
    20. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00827-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.