IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i1d10.1007_s10668-019-00581-4.html
   My bibliography  Save this article

Evaluation and characterization of groundwater using chemometric and spatial analysis

Author

Listed:
  • P. Mohana

    (Sathyabama Institute of Science and Technology)

  • P. M. Velmurugan

    (Sathyabama Institute of Science and Technology)

Abstract

Multivariate statistical techniques including inter-relationship analysis using correlation coefficient matrix, hierarchical cluster analysis and factor analysis were applied in order to characterize the hydrogeochemical nature and for the evaluation of groundwater quality. In the present research, forty-four groundwater samples were collected in the Arani Taluk of Tamil Nadu, South India. The result of correlation analysis reveals the occurrence of rock–water interaction and also suggests the absence of any significant influence from domestic sewage effluents on the groundwater of the region as there is no significant correlation between Na and Cl with that of NO3. Among trace metals, Fe and Mn show strong correlation as the hydroxides of these metals usually act as scavengers in aqueous medium which is also reflected from their significant correlation with Zn and Ni. Cluster analysis classifies the region into four different clusters representing the impact on the groundwater due to the activities in the agricultural region, settlement areas and in the industrial region. Results of factor analysis clearly demarcates the groundwater of the region into more contaminated, moderately contaminated and less contaminated with respect to major ions and heavy metals and also illustrates the location/region of the distribution of the contaminants using the integrated study of factor and spatial analysis.

Suggested Citation

  • P. Mohana & P. M. Velmurugan, 2021. "Evaluation and characterization of groundwater using chemometric and spatial analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 309-330, January.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-019-00581-4
    DOI: 10.1007/s10668-019-00581-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00581-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00581-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih -Ching Wu & Kai-Yuan Ke & Hsien-Tsung Lin & Yih-Chi Tan, 2017. "Optimization of Groundwater Quality Monitoring Network Using Risk Assessment and Geostatistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 515-530, January.
    2. Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.
    3. Dickson Abdul-Wahab & Dickson Adomako & Gibrilla Abass & Dennis K. Adotey & Geophrey Anornu & Samuel Ganyaglo, 2021. "Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5297-5315, April.
    4. Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    5. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    6. Giovanni De Filippis & Prisco Piscitelli & Idelberto Francesco Castorini & Anna Maria Raho & Adele Idolo & Nicola Ungaro & Filomena Lacarbonara & Erminia Sgaramella & Vito Laghezza & Donatella Chionna, 2020. "Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    7. Yassine El Yousfi & Mahjoub Himi & Mourad Aqnouy & Said Benyoussef & Hicham Gueddari & Imane Lamine & Hossain El Ouarghi & Amar Alali & Hanane Ait Hmeid & Mohamed Chahban & Abdennabi Alitane & Abdalla, 2023. "Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    8. Juan Esquivel & Guillermo Morales & María Esteller, 2015. "Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3175-3194, July.
    9. Ruiliang Jia & Jinlong Zhou & Yinzhu Zhou & Qiao Li & Yexin Gao, 2014. "A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model," Sustainability, MDPI, vol. 6(12), pages 1-14, November.
    10. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    11. Aminreza Neshat & Biswajeet Pradhan, 2015. "An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 543-563, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-019-00581-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.