IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00710-4.html
   My bibliography  Save this article

Energy and environmental analysis of vinasse processing using internal circulation biodigesters and concentrators for different production ranges of ethanol and its potential impact on Brazil

Author

Listed:
  • Geraldo Jose Ferraresi Araujo

    (University of São Paulo)

  • Sonia Vale Walter Borges Oliveira

    (University of São Paulo)

Abstract

Vinasse is one of the worst waste products in the production of ethanol. However, it can be used to generate biogas, electricity, and carbon credits from biodigesters and concentrators. Thus, studying the use of vinasse is justified, and this study asks the following research question: How feasible is it to use internal circulation biodigesters with the vinasse concentrator Citrotec®, and their conjugates in energy and environmental terms? To answer this question, the study employs quantitative methodology. To analyze this in terms of energy, the consumption of diesel in vinasse logistics has been calculated, the balance of energy in its processing and transport, its generation of electricity, and its capacity in terms of storage in urban centers. It has also been in terms of its incremental capacity in the production of cellulosic ethanol, the generation of electricity, and substitution for diesel, gasoline, and ethanol in the states of Brazil. The environmental analysis includes the balance and emission and mitigation of nitrous, sulfur, and carbon oxides in the processing and transport of vinasse, as well the figures for each Brazilian state that produces ethanol and the potential gains in the carbon credit market. The principal innovations of this article are a detailed analysis of the production ranges for autonomous sugar energy plants with a range of production from 500 to 4000 m3/day, the processing and logistics of vinasse for planting, as well as an analysis of each Brazilian state for the 2015/2016 crop. According to our results and review of the literature, the reuse of vinasse is recommended due to its energy and environmental gains, in a way that maintains the fertilizing and irrigation characteristics of the residues, particularly the IC biodigesters and concentrators and their conjugates.

Suggested Citation

  • Geraldo Jose Ferraresi Araujo & Sonia Vale Walter Borges Oliveira, 2021. "Energy and environmental analysis of vinasse processing using internal circulation biodigesters and concentrators for different production ranges of ethanol and its potential impact on Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3130-3163, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00710-4
    DOI: 10.1007/s10668-020-00710-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00710-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00710-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moraes, Bruna S. & Zaiat, Marcelo & Bonomi, Antonio, 2015. "Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 888-903.
    2. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    2. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
    4. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Fuess, Lucas Tadeu & dos Santos, Graciete Mary & Delforno, Tiago Palladino & de Souza Moraes, Bruna & da Silva, Ariovaldo José, 2020. "Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries," Renewable Energy, Elsevier, vol. 158(C), pages 3-12.
    6. Takeda, Paula Yumi & Oliveira, Cristiane Arruda & Dias, Maria Eduarda Simões & Paula, Carolina Tavares & Borges, André do Vale & Damianovic, Márcia Helena Rissato Zamariolli, 2022. "Enhancing the energetic potential of sugarcane biorefinery exchanging vinasse and glycerol in sugarcane off-season in an anaerobic reactor," Renewable Energy, Elsevier, vol. 195(C), pages 1218-1229.
    7. Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
    8. Nunes Ferraz Junior, Antônio Djalma & Etchebehere, Claudia & Perecin, Danilo & Teixeira, Suani & Woods, Jeremy, 2022. "Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Pazuch, Felix Augusto & Nogueira, Carlos Eduardo Camargo & Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Friedrich, Leandro & Lenz, Anderson Miguel, 2017. "Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 34-42.
    10. Vilela, R.S. & Fuess, L.T. & Saia, F.T. & Silveira, C.R.M. & Oliveira, C.A. & Andrade, P.A. & Langenhoff, A. & van der Zaan, B. & Cop, F. & Gregoracci, G.B. & Damianovic, M.H.R.Z., 2021. "Biofuel production from sugarcane molasses in thermophilic anaerobic structured-bed reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Leme, Rodrigo Marcelo & Seabra, Joaquim E.A., 2017. "Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry," Energy, Elsevier, vol. 119(C), pages 754-766.
    12. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
    13. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    14. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    16. Negrão, Djanira R. & Grandis, Adriana & Buckeridge, Marcos S. & Rocha, George J.M. & Leal, Manoel Regis L.V. & Driemeier, Carlos, 2021. "Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Zou, Shuzhen & Kang, Di, 2018. "Relationship between anaerobic digestion characteristics and biogas production under composting pretreatment," Renewable Energy, Elsevier, vol. 125(C), pages 485-494.
    18. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    19. Gunes, Burcu & Stokes, Joseph & Davis, Paul & Connolly, Cathal & Lawler, Jenny, 2019. "Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00710-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.