IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp1218-1229.html
   My bibliography  Save this article

Enhancing the energetic potential of sugarcane biorefinery exchanging vinasse and glycerol in sugarcane off-season in an anaerobic reactor

Author

Listed:
  • Takeda, Paula Yumi
  • Oliveira, Cristiane Arruda
  • Dias, Maria Eduarda Simões
  • Paula, Carolina Tavares
  • Borges, André do Vale
  • Damianovic, Márcia Helena Rissato Zamariolli

Abstract

Anaerobic digestion is a viable process to recover bioenergy through sugarcane vinasse in the form of methane. However, interruptions in the anaerobic reactors operation during the sugarcane off-season is clearly a challenge to the anaerobic systems’ performance, which potentially negatively compromise the energy balance in a sugarcane biorefinery. Glycerol, a by-product of biodiesel production, is a viable option for vinasse replacement in the off-season period. Anaerobic co-digestion of these wastewaters can promote improvements in operational conditions and enhance energy recovery. Thus, this study evaluated the exchange of substrates, vinasse and glycerol, in an anaerobic structured bed reactor (AnSTBR), using glycerol as substrate in off-season and vinasse in the following harvest season, in mono- and co-digestion processes. The AnSTBR operation showed promising results regarding the organic matter removal (higher than 80%, in terms of chemical oxygen demand) and methane yields (higher than 225 NmLCH4.g−1CODrem). The methane produced, for a cycle of harvest, off-season and harvest again, can improve approximately 17.5% the energy generation in the sugarcane biorefinery, using glycerol as substrate, instead of shutting down the anaerobic reactor in off-season, resulting in a positive economic balance. Furthermore, the operational strategy of gradually exchanging substrates ensured the system stability throughout the operation.

Suggested Citation

  • Takeda, Paula Yumi & Oliveira, Cristiane Arruda & Dias, Maria Eduarda Simões & Paula, Carolina Tavares & Borges, André do Vale & Damianovic, Márcia Helena Rissato Zamariolli, 2022. "Enhancing the energetic potential of sugarcane biorefinery exchanging vinasse and glycerol in sugarcane off-season in an anaerobic reactor," Renewable Energy, Elsevier, vol. 195(C), pages 1218-1229.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1218-1229
    DOI: 10.1016/j.renene.2022.06.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moraes, Bruna S. & Zaiat, Marcelo & Bonomi, Antonio, 2015. "Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 888-903.
    2. Fuess, Lucas Tadeu & Kiyuna, Luma Sayuri Mazine & Ferraz, Antônio Djalma Nunes & Persinoti, Gabriela Felix & Squina, Fabio Marcio & Garcia, Marcelo Loureiro & Zaiat, Marcelo, 2017. "Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse," Applied Energy, Elsevier, vol. 189(C), pages 480-491.
    3. Djalma Nunes Ferraz Júnior, Antônio & Koyama, Mirian H. & de Araújo Júnior, Moacir M. & Zaiat, Marcelo, 2016. "Thermophilic anaerobic digestion of raw sugarcane vinasse," Renewable Energy, Elsevier, vol. 89(C), pages 245-252.
    4. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    5. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Nunes Ferraz Junior, Antônio Djalma & Etchebehere, Claudia & Perecin, Danilo & Teixeira, Suani & Woods, Jeremy, 2022. "Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Vilela, R.S. & Fuess, L.T. & Saia, F.T. & Silveira, C.R.M. & Oliveira, C.A. & Andrade, P.A. & Langenhoff, A. & van der Zaan, B. & Cop, F. & Gregoracci, G.B. & Damianovic, M.H.R.Z., 2021. "Biofuel production from sugarcane molasses in thermophilic anaerobic structured-bed reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.
    6. Fuess, Lucas Tadeu & dos Santos, Graciete Mary & Delforno, Tiago Palladino & de Souza Moraes, Bruna & da Silva, Ariovaldo José, 2020. "Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries," Renewable Energy, Elsevier, vol. 158(C), pages 3-12.
    7. Fuess, Lucas Tadeu & Klein, Bruno Colling & Chagas, Mateus Ferreira & Alves Ferreira Rezende, Mylene Cristina & Garcia, Marcelo Loureiro & Bonomi, Antonio & Zaiat, Marcelo, 2018. "Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach," Renewable Energy, Elsevier, vol. 122(C), pages 674-687.
    8. Purwanta, & Bayu, Ardian Indra & Mellyanawaty, Melly & Budiman, Arief & Budhijanto, Wiratni, 2022. "Techno-economic analysis of reactor types and biogas utilization schemes in thermophilic anaerobic digestion of sugarcane vinasse," Renewable Energy, Elsevier, vol. 201(P1), pages 864-875.
    9. de Castro, Thiago Morais & Arantes, Eudes José & de Mendonça Costa, Mônica Sarolli Silva & Gotardo, Jackeline Tatiane & Passig, Fernando Hermes & de Carvalho, Karina Querne & Gomes, Simone Damasceno, 2021. "Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkal," Renewable Energy, Elsevier, vol. 164(C), pages 1436-1446.
    10. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    11. Geraldo Jose Ferraresi Araujo & Sonia Vale Walter Borges Oliveira, 2021. "Energy and environmental analysis of vinasse processing using internal circulation biodigesters and concentrators for different production ranges of ethanol and its potential impact on Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3130-3163, March.
    12. Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
    13. de Moraes Dutenkefer, Raphael & de Oliveira Ribeiro, Celma & Morgado Mutran, Victoria & Eduardo Rego, Erik, 2018. "The insertion of biogas in the sugarcane mill product portfolio: A study using the robust optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 729-740.
    14. Fonseca, G.C. & Costa, C.B.B. & Cruz, A.J.G., 2020. "Economic analysis of a second-generation ethanol and electricity biorefinery using superstructural optimization," Energy, Elsevier, vol. 204(C).
    15. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    16. Fuess, Lucas Tadeu & Kiyuna, Luma Sayuri Mazine & Ferraz, Antônio Djalma Nunes & Persinoti, Gabriela Felix & Squina, Fabio Marcio & Garcia, Marcelo Loureiro & Zaiat, Marcelo, 2017. "Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse," Applied Energy, Elsevier, vol. 189(C), pages 480-491.
    17. Pazuch, Felix Augusto & Nogueira, Carlos Eduardo Camargo & Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Friedrich, Leandro & Lenz, Anderson Miguel, 2017. "Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 34-42.
    18. Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2020. "Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse," Energy, Elsevier, vol. 197(C).
    19. Leme, Rodrigo Marcelo & Seabra, Joaquim E.A., 2017. "Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry," Energy, Elsevier, vol. 119(C), pages 754-766.
    20. Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1218-1229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.