IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i10d10.1007_s10668-021-01289-0.html
   My bibliography  Save this article

Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review

Author

Listed:
  • Yudi Wu

    (FAMU-FSU College of Engineering)

  • Helen X. Trejo

    (California State Polytechnic University Pomona)

  • Gang Chen

    (FAMU-FSU College of Engineering)

  • Simeng Li

    (California State Polytechnic University Pomona)

Abstract

The presence of contaminants of emerging concern (CECs) in wastewater treatment plant effluents is a significant underlying health risk and environmental concern. CECs consist of a wide variety of contaminants, including pharmaceuticals and personal care products, hormones, steroids, alkyl-phenols, flame retardants and pesticides. Their impact is of particular relevance to agricultural settings due to CEC uptake and accumulation in food crops and consequent diffusion into the food-chain. Meanwhile, marijuana reform is accelerating in the US, based on the scope and pace of legalization efforts and on wider acceptance in polls of voters. In this review, the effectiveness of industrial hemp (Cannabis sativa L.) in phytoremediation and hyperaccumulation of organic contaminants (e.g., benzo(a)pyrene, Naphthalene, and Chrysene) and heavy metal (e.g., Selenium and Cobalt) from either aqueous solutions or contaminated soils has been reviewed. The potential of industrial hemp as a renewable resource to biodegrade and/or decontaminate CECs is explored. Disposal strategies of this new phytoremediation crop that promote circular economy are also discussed. According to this current review, we believe the use of industrial hemp for phytoremediation is promising to have a sustainable, environmentally friendly and economically viable future.

Suggested Citation

  • Yudi Wu & Helen X. Trejo & Gang Chen & Simeng Li, 2021. "Phytoremediation of contaminants of emerging concern from soil with industrial hemp (Cannabis sativa L.): a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14405-14435, October.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01289-0
    DOI: 10.1007/s10668-021-01289-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01289-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01289-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ip, Kenneth & Miller, Andrew, 2012. "Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 1-9.
    2. Schettini, Evelia & Santagata, Gabriella & Malinconico, Mario & Immirzi, Barbara & Scarascia Mugnozza, Giacomo & Vox, Giuliano, 2013. "Recycled wastes of tomato and hemp fibres for biodegradable pots: Physico-chemical characterization and field performance," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 9-19.
    3. Martin, Michael & Svensson, Niclas & Fonseca, Jorge & Eklund, Mats, 2014. "Quantifying the environmental performance of integrated bioethanol and biogas production," Renewable Energy, Elsevier, vol. 61(C), pages 109-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Mahbubar Rahman & Arup Dey & Nita Yodo & Chiwon W. Lee & David Grewell, 2023. "Soybean By-Products Bioplastic (Polylactic Acid)-Based Plant Containers: Sustainable Development and Performance Study," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.
    3. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Michael Martin & Lina Danielsson, 2016. "Environmental Implications of Dynamic Policies on Food Consumption and Waste Handling in the European Union," Sustainability, MDPI, vol. 8(3), pages 1-15, March.
    5. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    6. Arlen Zúniga & Rute Eires & Raphaele Malheiro, 2023. "New Lime-Based Hybrid Composite of Sugarcane Bagasse and Hemp as Aggregates," Resources, MDPI, vol. 12(5), pages 1-20, April.
    7. Michael Francis D. Benjamin & Aristotle T. Ubando & Luis F. Razon & Raymond R. Tan, 2015. "Analyzing the disruption resilience of bioenergy parks using dynamic inoperability input–output modeling," Environment Systems and Decisions, Springer, vol. 35(3), pages 351-362, September.
    8. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    9. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    10. Enora Barrau & Mathias Glaus, 2022. "Structural and Environmental Performance of Evolving Industrial Symbiosis: A Multidimensional Analysis," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    11. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    12. Rotem Haik & Isaac A. Meir & Alva Peled, 2023. "Lime Hemp Concrete with Unfired Binders vs. Conventional Building Materials: A Comparative Assessment of Energy Requirements and CO 2 Emissions," Energies, MDPI, vol. 16(2), pages 1-11, January.
    13. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Kamil Witaszek & Magdalena Piekutowska & Małgorzata Idzior-Haufa & Agnieszka Wawrzyniak, 2021. "Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas," Energies, MDPI, vol. 14(22), pages 1-16, November.
    14. Piotr Kosiński & Przemysław Brzyski & Maria Tunkiewicz & Zbigniew Suchorab & Damian Wiśniewski & Paweł Palczyński, 2022. "Thermal Properties of Hemp Shives Used as Insulation Material in Construction Industry," Energies, MDPI, vol. 15(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01289-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.