IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i7d10.1007_s10668-019-00482-6.html
   My bibliography  Save this article

Anthropogenic reactive nitrogen releases and gray water footprints in urban water pollution evaluation: the case of Shenzhen City, China

Author

Listed:
  • Yaqing Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chaofan Xian

    (Chinese Academy of Sciences)

  • Yaqiong Jiang

    (Beijing Normal University)

  • Xuelian Pan

    (Shenzhen Academy of Environmental Sciences)

  • Zhiyun Ouyang

    (Chinese Academy of Sciences)

Abstract

With rapid urbanization in China, anthropogenic reactive nitrogen (Nr) releases to urban environment contribute to water resource depletion and serious water quality deterioration. This study assessed nitrogen-related water pollution in an urbanized city (Shenzhen, China) by using the indicators of gray water footprint (GWF) and water pollution level (WPL), concerning potential impacts of aquatic Nr releases on administrate districts and affiliated urban rivers within city. The results showed that urban aquatic Nr releases decreased dynamically with average 15.98 thousand t N during 2001–2016, accompanied with the reduction in gray water footprint from 23.06 × 108 to 15.56 × 108 m3, mainly from residential activities. Administrative districts of Baoan and Longgang were the main regional GWF producers during 2012–2016. Areas containing urban rivers with especially high potential WPLs were mainly located in northern Baoan, and northeast Longgang district, and the risks for water pollution development still spread over urban water networks in Shenzhen City. Several strategies (encourage sustainable lifestyle, target infrastructure improvements and develop district-level GWF reduction targets) are needed to mitigate urban water pollution. This study provides insights into the status of assimilation capacity within a city to mitigate aquatic N pollution, meeting current water challenge.

Suggested Citation

  • Yaqing Wang & Chaofan Xian & Yaqiong Jiang & Xuelian Pan & Zhiyun Ouyang, 2020. "Anthropogenic reactive nitrogen releases and gray water footprints in urban water pollution evaluation: the case of Shenzhen City, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6343-6361, October.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:7:d:10.1007_s10668-019-00482-6
    DOI: 10.1007/s10668-019-00482-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00482-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00482-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gang Liu & Lu Shi & Kevin W. Li, 2018. "Equitable Allocation of Blue and Green Water Footprints Based on Land-Use Types: A Case Study of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 10(10), pages 1-27, October.
    2. Eros Borsato & Alejandro Galindo & Paolo Tarolli & Luigi Sartori & Francesco Marinello, 2018. "Evaluation of the Grey Water Footprint Comparing the Indirect Effects of Different Agricultural Practices," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuli Liu & Rui Xiong & Pibin Guo & Lei Nie & Qinqin Shi & Wentao Li & Jing Cui, 2022. "Virtual Water Flow Pattern in the Yellow River Basin, China: An Analysis Based on a Multiregional Input–Output Model," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    2. Chaofan Xian & Shuo Yang & Yupeng Fan & Haotong Wu & Cheng Gong, 2022. "Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China," Land, MDPI, vol. 11(10), pages 1-25, October.
    3. Wu, Dongdong & Zhang, Yan & Zhang, Xiaolin & Fath, Brain D., 2023. "Research progress of urban nitrogen cycle and metabolism," Ecological Modelling, Elsevier, vol. 486(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatevik Yezekyan & Marco Benetti & Giannantonio Armentano & Samuele Trestini & Luigi Sartori & Francesco Marinello, 2021. "Definition of Reference Models for Power, Mass, Working Width, and Price for Tillage Implements," Agriculture, MDPI, vol. 11(3), pages 1-15, February.
    2. Anna Podlasek & Eugeniusz Koda & Magdalena Daria Vaverková, 2021. "The Variability of Nitrogen Forms in Soils Due to Traditional and Precision Agriculture: Case Studies in Poland," IJERPH, MDPI, vol. 18(2), pages 1-28, January.
    3. Jeonghyun Kim & Hojeong Park & Jong Ahn Chun & Sanai Li, 2018. "Adaptation Strategies under Climate Change for Sustainable Agricultural Productivity in Cambodia," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    4. Ge Song & Chao Dai & Qian Tan & Shan Zhang, 2019. "Agricultural Water Management Model Based on Grey Water Footprints under Uncertainty and its Application," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    5. Marcelo Werneck Barbosa & José M. Cansino, 2022. "A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    6. Wei He & Guozhu Jia & Hengshan Zong & Tao Huang, 2019. "Multi-Objective Cloud Manufacturing Service Selection and Scheduling with Different Objective Priorities," Sustainability, MDPI, vol. 11(17), pages 1-24, September.
    7. Gang Liu & Fan Hu & Yixin Wang & Huimin Wang, 2019. "Assessment of Lexicographic Minimax Allocations of Blue and Green Water Footprints in the Yangtze River Economic Belt Based on Land, Population, and Economy," IJERPH, MDPI, vol. 16(4), pages 1-21, February.
    8. Xiaoxue Zheng & Lijie Qin & Hongshi He, 2020. "Impacts of Climatic and Agricultural Input Factors on the Water Footprint of Crop Production in Jilin Province, China," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    9. Gang Liu & Weiqian Wang & Kevin W. Li, 2019. "Water Footprint Allocation under Equity and Efficiency Considerations: A Case Study of the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 16(5), pages 1-24, March.
    10. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Hong, Yang, 2020. "Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt," Agricultural Water Management, Elsevier, vol. 235(C).
    11. Eros Borsato & Marco Martello & Francesco Marinello & Lucia Bortolini, 2019. "Environmental and Economic Sustainability Assessment for Two Different Sprinkler and A Drip Irrigation Systems: A Case Study on Maize Cropping," Agriculture, MDPI, vol. 9(9), pages 1-15, August.
    12. Jin, Zhaoqiang & Yue, Rui & Ma, Zhenfa & Cheng, Shangheng & Khan, Mohammad Nauman & Nie, Lixiao, 2024. "Effect of water and nitrogen coupling on energy balance and production efficiency in rice production," Energy, Elsevier, vol. 288(C).
    13. Li-Yao Shien & Chih-Hsing Liu & Yi-Min Li, 2022. "How Positive and Negative Environmental Behaviours Influence Sustainable Tourism Intentions," Sustainability, MDPI, vol. 14(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:7:d:10.1007_s10668-019-00482-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.