IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i6d10.1007_s10668-019-00436-y.html
   My bibliography  Save this article

Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar

Author

Listed:
  • Prashanti Sharma

    (International Centre for Integrated Mountain Development (ICIMOD))

  • Rajesh Bahadur Thapa

    (International Centre for Integrated Mountain Development (ICIMOD))

  • Mir Abdul Matin

    (International Centre for Integrated Mountain Development (ICIMOD))

Abstract

Myanmar has been experiencing a significant amount of deforestation and forest degradation in recent years. Being a developing country, people are heavily dependent on its forest for sustenance and livelihood. This study examines a methodology to identify potential drivers and their relative significance for deforestation. The study was tested in one of the districts but could be applied in other areas of the country. The forest and non-forest land cover maps from the Japan Aerospace Exploration Agency (JAXA) for the years 2008 and 2016 were used in the study. It was derived that 46.54% of study area is still covered with forest, but there has been a significant decrease in forest area by 7.29% between the years 2008 and 2016. We examined a number of spatially explicit potential drivers of deforestation such as infrastructure, elevation, slope, deforested land, and population. As informed prevention awareness of deforestation, we projected future forest conditions using a cellular automation modeling technique for the years 2020, 2025 and 2030. We found that major physical and socioeconomic driving factors of deforestation such as proximity to infrastructure (reservoirs and roads), certain elevation levels, slope, proximity to previously deforested area and population density are strongly associated with neighborhood deforestation. The future projection showed a decrease in forest area by 13.8% from 2016 to 2030. This work therefore provides crucial information on forest landscape for forest management in the district. The projective scenario of study area generated by the model highlights the need for forest conservation and planning while addressing the key drivers of deforestation, giving direction for future potential areas of REDD+ implementation in the region.

Suggested Citation

  • Prashanti Sharma & Rajesh Bahadur Thapa & Mir Abdul Matin, 2020. "Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5521-5538, August.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00436-y
    DOI: 10.1007/s10668-019-00436-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00436-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00436-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ian Elz & Kevin Tansey & Susan E. Page & Mandar Trivedi, 2015. "Modelling Deforestation and Land Cover Transitions of Tropical Peatlands in Sumatra, Indonesia Using Remote Sensed Land Cover Data Sets," Land, MDPI, vol. 4(3), pages 1-18, August.
    2. Karen C. Seto & Robert K. Kaufmann, 2003. "Modeling the Drivers of Urban Land Use Change in the Pearl River Delta, China: Integrating Remote Sensing with Socioeconomic Data," Land Economics, University of Wisconsin Press, vol. 79(1), pages 106-121.
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    4. Venema, Henry David & Calamai, Paul H. & Fieguth, Paul, 2005. "Forest structure optimization using evolutionary programming and landscape ecology metrics," European Journal of Operational Research, Elsevier, vol. 164(2), pages 423-439, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Séverin Biaou & Gerard Nounagnon Gouwakinnou & Honoré Samadori Sorotori Biaou & Marc Sèwanou Tovihessi & Beranger Kohomlan Awessou & Fiacre Codjo Ahononga & Felix Ogoubiyi Houéto, 2022. "Identifying the land use and land cover change drivers: methods and case studies of two forest reserves in Northern Benin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9885-9905, August.
    2. Paradis, Emmanuel, 2021. "Forest gains and losses in Southeast Asia over 27 years: The slow convergence towards reforestation," Forest Policy and Economics, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burak Güneralp & Michael K Reilly & Karen C Seto, 2012. "Capturing Multiscalar Feedbacks in Urban Land Change: A Coupled System Dynamics Spatial Logistic Approach," Environment and Planning B, , vol. 39(5), pages 858-879, October.
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    4. Jianglong Chen & Jinlong Gao & Feng Yuan, 2016. "Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    5. Weiguo Liu & Karen C Seto, 2008. "Using the ART-MMAP Neural Network to Model and Predict Urban Growth: A Spatiotemporal Data Mining Approach," Environment and Planning B, , vol. 35(2), pages 296-317, April.
    6. Guangjin Tian & Zhifeng Yang & Yichun Xie, 2007. "Detecting Spatiotemporal Dynamic Landscape Patterns Using Remote Sensing and the Lacunarity Index: A Case Study of Haikou City, China," Environment and Planning B, , vol. 34(3), pages 556-569, June.
    7. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    8. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    9. Michail Fragkias & Karen C Seto, 2007. "Modeling Urban Growth in Data-Sparse Environments: A New Approach," Environment and Planning B, , vol. 34(5), pages 858-883, October.
    10. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    11. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    12. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    13. Elisabeth Hettig & Jann Lay & Kacana Sipangule, 2016. "Drivers of Households’ Land-Use Decisions: A Critical Review of Micro-Level Studies in Tropical Regions," Land, MDPI, vol. 5(4), pages 1-32, October.
    14. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    15. Shu, Cheng & Xie, Hualin & Jiang, Jinfa & Chen, Qianru, 2018. "Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China?," Land Use Policy, Elsevier, vol. 77(C), pages 107-115.
    16. Jaekyung Lee & Galen Newman & Yunmi Park, 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    17. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    19. Deininger, Klaus & Jin, Songqing, 2009. "Securing property rights in transition: Lessons from implementation of China's rural land contracting law," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 22-38, May.
    20. Javier Muro & Leo Zurita-Arthos & José Jara & Esteban Calderón & Richard Resl & Andreas Rienow & Valerie Graw, 2020. "Earth Observation for Settlement Mapping of Amazonian Indigenous Populations to Support SDG7," Resources, MDPI, vol. 9(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00436-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.