IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v20y2018i4d10.1007_s10668-017-9958-0.html
   My bibliography  Save this article

Tackling environmental issues in industrial ceramic sintering of sewage sludge: odors and gas emissions

Author

Listed:
  • L. V. Cremades

    (Universitat Politècnica de Catalunya)

  • C. Soriano

    (Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE))

  • J. A. Cusidó

    (Universitat Politècnica de Catalunya)

Abstract

The inertization of sewage sludge in ceramic matrices to be used in structural or red ceramic material for buildings has proved to be a good case of reuse of waste material. However, its practical application has not yet been fully implemented in real-case scenarios, and environmental concern seems to be the main hurdle to overcome for its definitive massive approval by the building industry. In this contribution, air emissions related to the sintering of ceramic bricks made of mixtures of clay with some percentage of sewage sludge have been analyzed (in terms of gases, suspended particles and odors). Tests conducted during this work have shown higher VOC emissions in samples with some percentage of sludge in their composition (still under the regulated emission limit values), and some of them (mercaptans) are associated with odor nuisances. Besides, limit emissions values were exceeded by three inorganic pollutants (suspended particles, NOx and HCl). Measurements in an industrial scenario test showed a high variability in air pollution emissions, suggesting the need of in situ testing for definitive implementation. With the experience collected in this and several previous works in the area of emissions related to the production of added sewage sludge ceramic, some guidelines and recommendations are given to minimize the environmental impact of ceramic production plants implementing this particular waste revalorization process. Guidelines cover different aspects: workplace implementation of gas cleaning equipment; geographical context and local wind pattern analysis; monitoring of emission and immission levels; and information policy through social control participation procedures for reporting of nuisance episodes.

Suggested Citation

  • L. V. Cremades & C. Soriano & J. A. Cusidó, 2018. "Tackling environmental issues in industrial ceramic sintering of sewage sludge: odors and gas emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1651-1663, August.
  • Handle: RePEc:spr:endesu:v:20:y:2018:i:4:d:10.1007_s10668-017-9958-0
    DOI: 10.1007/s10668-017-9958-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-017-9958-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-017-9958-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    2. Hau, K. C. & Sculli, D., 1991. "Costs of disposal of sewage sludge: a case study," Engineering Costs and Production Economics, Elsevier, vol. 21(2), pages 133-141, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Sarengaowa & Chen, Heng & Gao, Yue & Fan, Lanxin & Pan, Peiyuan & Xu, Gang, 2024. "A novel waste-to-energy system based on sludge hydrothermal treatment and medical waste plasma gasification and integrated with the waste heat recovery of a cement plant," Energy, Elsevier, vol. 305(C).
    2. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    3. Andrea Guerrini & Giulia Romano & Simone Ferretti & Donatella Fibbi & Daniele Daddi, 2016. "A Performance Measurement Tool Leading Wastewater Treatment Plants toward Economic Efficiency and Sustainability," Sustainability, MDPI, vol. 8(12), pages 1-14, November.
    4. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    6. Lin, Kuo-Hsiung & Lai, Nina & Zeng, Jun-Yan & Chiang, Hung-Lung, 2020. "Microwave-pyrolysis treatment of biosludge from a chemical industrial wastewater treatment plant for exploring product characteristics and potential energy recovery," Energy, Elsevier, vol. 199(C).
    7. Andrea Salimbeni & Marta Di Bianca & Andrea Maria Rizzo & David Chiaramonti, 2023. "Activated Carbon and P-Rich Fertilizer Production from Industrial Sludge by Application of an Integrated Thermo-Chemical Treatment," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    8. Nuhu Dalhat Mu’azu & Nabeel Jarrah & Mukarram Zubair & Omar Alagha, 2017. "Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review," IJERPH, MDPI, vol. 14(10), pages 1-34, September.
    9. Seongmin Kang & Changsang Cho & Ki-Hyun Kim & Eui-chan Jeon, 2018. "Fossil Carbon Fraction and Measuring Cycle for Sewage Sludge Waste Incineration," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    10. Gil-Lalaguna, N. & Sánchez, J.L. & Murillo, M.B. & Atienza-Martínez, M. & Gea, G., 2014. "Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char," Energy, Elsevier, vol. 76(C), pages 652-662.
    11. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    12. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    13. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    14. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    15. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    16. Ren, Jingzheng & Liang, Hanwei & Chan, Felix T.S., 2017. "Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 29-39.
    17. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    18. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    19. Peng Chen & Junkang Wu & Yue He & Yaping Zhang & Ran Yu & Xiwu Lu, 2022. "Enhanced Nutrient Removal in A 2 N Effluent by Reclaimed Biochar Adsorption," IJERPH, MDPI, vol. 19(7), pages 1-15, March.
    20. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:20:y:2018:i:4:d:10.1007_s10668-017-9958-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.