IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v192y2022ics0921800921003050.html
   My bibliography  Save this article

How to remove microplastics in wastewater? A cost-effectiveness analysis

Author

Listed:
  • Vuori, Larissa
  • Ollikainen, Markku

Abstract

Millions of tonnes of plastic litter end up annually in the environment causing damage to the ecosystem. There are currently no standards regulating the amount of microplastic in wastewater, and the question is, should there be? Answering this question requires an understanding of damages microplastic causes to the environment and its removal potential from wastewater. This paper examines the cost-effectiveness of three wastewater treatment (activated sludge, rapid sand filtering and membrane bioreactor) and two sludge management technologies (anaerobic digestion and incineration), in terms of their microplastic removal capacity regarding aquatic and terrestrial ecosystems. We find removing microplastic from wastewater technically feasible and cost-effective. Membrane bioreactor with sludge incineration preventing removed microlitter from accumulating in soils is the most cost-effective option. This gives grounds for extending government regulation to microplastics in wastewater treatment plants. Policy targeting companies using microplastics in their products is, however, necessary to solve the problem ultimately.

Suggested Citation

  • Vuori, Larissa & Ollikainen, Markku, 2022. "How to remove microplastics in wastewater? A cost-effectiveness analysis," Ecological Economics, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:ecolec:v:192:y:2022:i:c:s0921800921003050
    DOI: 10.1016/j.ecolecon.2021.107246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800921003050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2021.107246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    2. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    3. Jussi Lankoski & Markku Ollikainen & Pekka Uusitalo, 2006. "No-till technology: benefits to farmers and the environment? Theoretical analysis and application to Finnish agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(2), pages 193-221, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentin Marian Antohi & Romeo Victor Ionescu & Monica Laura Zlati & Catalina Iticescu & Puiu Lucian Georgescu & Madalina Calmuc, 2023. "Regional Regression Correlation Model of Microplastic Water Pollution Control Using Circular Economy Tools," IJERPH, MDPI, vol. 20(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    3. N. Graveline & B. Aunay & J. Fusillier & J. Rinaudo, 2014. "Coping with Urban & Agriculture Water Demand Uncertainty in Water Management Plan Design: the Interest of Participatory Scenario Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3075-3093, August.
    4. Seongmin Kang & Changsang Cho & Ki-Hyun Kim & Eui-chan Jeon, 2018. "Fossil Carbon Fraction and Measuring Cycle for Sewage Sludge Waste Incineration," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    5. Sidemo-Holm, William & Smith, Henrik G. & Brady, Mark V., 2018. "Improving agricultural pollution abatement through result-based payment schemes," Land Use Policy, Elsevier, vol. 77(C), pages 209-219.
    6. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    7. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    8. Rolfe, John & Windle, Jill & McCosker, Kevin & Northey, Adam, 2018. "Assessing cost-effectiveness when environmental benefits are bundled: agricultural water management in Great Barrier Reef catchments," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), July.
    9. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    10. Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
    11. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    12. Lankoski, Jussi E. & Ollikainen, Markku, 2009. "Biofuel policies and the environment: the effects of biofuel feedstock production on climate, water quality and biodiversity," 2009 Conference, August 16-22, 2009, Beijing, China 51677, International Association of Agricultural Economists.
    13. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    14. Doole, Graeme J. & Vigiak, Olga & Pannell, David J. & Roberts, Anna M., 2013. "Cost-effective strategies to mitigate multiple pollutants in an agricultural catchment in North Central Victoria, Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    15. Cyril Bourgeois & Nosra Ben-Fradj & Mélissa Clodic & Pierre-Alain Jayet, 2011. "How cost-effective is a mixed policy targeting the management of three pollutants from N-fertilizers," Working Papers 2011/03, INRA, Economie Publique.
    16. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    17. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    18. Sasaki, Hiroki, 2010. "Relationships between Agricultural policies and Environmental Effects in Japan: An Environmental-Economic Integrated Model Approach," 120th Seminar, September 2-4, 2010, Chania, Crete 109399, European Association of Agricultural Economists.
    19. Marita Laukkanen & Céline Nauges, 2011. "Environmental and Production Cost Impacts of No-till in Finland: Estimates from Observed Behavior," Land Economics, University of Wisconsin Press, vol. 87(3), pages 508-527.
    20. Vito Horvatić & Helena Bakić Begić & Davor Romić & Marko Černe & Smiljana Goreta Ban & Monika Zovko & Marija Romić, 2021. "Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region," Land, MDPI, vol. 10(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:192:y:2022:i:c:s0921800921003050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.