IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v59y2020i3d10.1007_s00181-019-01711-7.html
   My bibliography  Save this article

Assessing the economy–climate relationships for Brazilian agriculture

Author

Listed:
  • Nicole Rennó Castro

    (University of São Paulo)

  • Humberto Francisco Silva Spolador

    (University of São Paulo)

  • Fábio Ricardo Marin

    (University of São Paulo)

Abstract

Studies of the anticipated consequences of climate change suggest that among all economic sectors, agriculture would be the most affected. In Brazil, this issue is particularly relevant, since the agricultural sector and its related activities account for a significant share of the country’s GDP and employment. Using a fixed effects panel model and data from 1990 through 2012, this paper empirically analyzes the vulnerability of agriculture to climate variables in Brazil’s ten main agricultural states and the possible resulting loss of agricultural value in the face of future climate change. Our work is differentiated from prior studies in that it employs state level annual data series, which allows the aggregation of a great deal of relevant current information to the analysis. The results indicate that climate variables have a significant impact on most of these states’ agricultural production, especially air temperature, whose effects showed higher estimated magnitude than those from rainfall. Considering the estimated elasticities and climatic projections, the most severe damage to agriculture is expected in Espírito Santo, Minas Gerais, and Rio Grande do Sul.

Suggested Citation

  • Nicole Rennó Castro & Humberto Francisco Silva Spolador & Fábio Ricardo Marin, 2020. "Assessing the economy–climate relationships for Brazilian agriculture," Empirical Economics, Springer, vol. 59(3), pages 1161-1188, September.
  • Handle: RePEc:spr:empeco:v:59:y:2020:i:3:d:10.1007_s00181-019-01711-7
    DOI: 10.1007/s00181-019-01711-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-019-01711-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-019-01711-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    2. José Gustavo Féres & Eustáquio José Reis & Juliana Speranza, 2008. "Assessing the Impact of Climate Change on the Brazilian Agricultural Sector," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807181438190, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    3. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    4. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    5. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    6. Millner, Antony & Dietz, Simon, 2015. "Adaptation to climate change and economic growth in developing countries," Environment and Development Economics, Cambridge University Press, vol. 20(3), pages 380-406, June.
    7. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    8. Butzer, Rita & Mundlak, Yair & Larson, Donald F., 2010. "Measures of Fixed Capital in Agriculture," Discussion Papers 290011, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    9. Belloumi, Mounir, 2014. "Investigating the impact of climate change on agricultural production in eastern and southern African countries," AGRODEP working papers 3, International Food Policy Research Institute (IFPRI).
    10. Maximilian Auffhammer & V. Ramanathan & Jeffrey Vincent, 2012. "Climate change, the monsoon, and rice yield in India," Climatic Change, Springer, vol. 111(2), pages 411-424, March.
    11. Kuminoff, Nicolai V. & Parmeter, Christopher F. & Pope, Jaren C., 2010. "Which hedonic models can we trust to recover the marginal willingness to pay for environmental amenities?," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 145-160, November.
    12. Millner, Antony & Dietz, Simon, 2015. "Adaptation to climate change and economic growth in developing countries," LSE Research Online Documents on Economics 57863, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monica Lopes-Ferreira & Adolfo Luis Almeida Maleski & Leticia Balan-Lima & Jefferson Thiago Gonçalves Bernardo & Lucas Marques Hipolito & Ana Carolina Seni-Silva & Joao Batista-Filho & Maria Alice Pim, 2022. "Impact of Pesticides on Human Health in the Last Six Years in Brazil," IJERPH, MDPI, vol. 19(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    2. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    3. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    4. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    5. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate Change and Agriculture: Farmer Adaptation to Extreme Heat," Discussion Papers dp18-02, Department of Economics, Simon Fraser University.
    6. Rigas, Nikos & Kounetas, Konstantinos, 2021. "The Role of temperature, Precipitation and CO2 emissions on Countries’ Economic Growth and Productivity," MPRA Paper 104727, University Library of Munich, Germany.
    7. Surender Kumar & Madhu Khanna, 2019. "Temperature and production efficiency growth: empirical evidence," Climatic Change, Springer, vol. 156(1), pages 209-229, September.
    8. Bassino, Jean-Pascal & Lagoarde-Segot, Thomas & Woitek, Ulrich, 2020. "The irreversible welfare cost of climate anomalies. Evidence from Japan (1872-1917)," Discussion Paper Series 704, Institute of Economic Research, Hitotsubashi University.
    9. Bassino, Jean-Pascal & Lagoarde-Segot, Thomas & Woitek, Ulrich, 2022. "Prenatal climate shocks and adult height in developing countries. Evidence from Japan (1872–1917)," Economics & Human Biology, Elsevier, vol. 45(C).
    10. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    11. Kaixing Huang & Qianqian Hong, 2024. "The impact of global warming on obesity," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(3), pages 1-32, September.
    12. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    13. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    14. Yubin Zhao & Shuguang Liu, 2023. "Effects of Climate Change on Economic Growth: A Perspective of the Heterogeneous Climate Regions in Africa," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    15. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    16. Chiara Falco & Franco Donzelli & Alessandro Olper, 2018. "Climate Change, Agriculture and Migration: A Survey," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    17. Wu, Zhiyang & Zhou, Tao & Zhang, Ning & Choi, Yongrok & Kong, Fanbin, 2023. "A hidden risk in climate change: The effect of daily rainfall shocks on industrial activities," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 161-180.
    18. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    19. Yabin Da & Bin Zeng & Jing-Li Fan & Jiawei Hu & Lanlan Li, 2023. "Heterogeneous responses to climate: evidence from residential electricity consumption," Climatic Change, Springer, vol. 176(8), pages 1-19, August.
    20. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).

    More about this item

    Keywords

    Agricultural output; Growth; Climate; Brazil;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:59:y:2020:i:3:d:10.1007_s00181-019-01711-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.