IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v48y2015i1p407-426.html
   My bibliography  Save this article

Forecasting major Asian exchange rates using a new semiparametric STAR model

Author

Listed:
  • Nan Cai
  • Zongwu Cai
  • Ying Fang
  • Qiuhua Xu

Abstract

To forecast exchange rates, this paper proposes a new semiparametric smooth transition autoregressive model by allowing state variables to enter into the transition function in a nonparametric way. We propose a three-stage estimation procedure to estimate both the parametric and nonparametric parts in the new model, and a simulation study is conducted to demonstrate satisfactory finite sample performance. The empirical results, based on the proposed model applied to forecasting five major Asian exchange rates, show that the new model has some advantages in out-of-sample forecasting performance. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Nan Cai & Zongwu Cai & Ying Fang & Qiuhua Xu, 2015. "Forecasting major Asian exchange rates using a new semiparametric STAR model," Empirical Economics, Springer, vol. 48(1), pages 407-426, February.
  • Handle: RePEc:spr:empeco:v:48:y:2015:i:1:p:407-426
    DOI: 10.1007/s00181-014-0888-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-014-0888-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-014-0888-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarantis, Nicholas, 1999. "Modeling non-linearities in real effective exchange rates," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 27-45, January.
    2. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    3. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    4. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    5. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    6. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    7. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    8. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    9. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    10. Boero, Gianna & Marrocu, Emanuela, 2002. "The Performance of Non-linear Exchange Rate Models: A Forecasting Comparison," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 513-542, November.
    11. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    12. Cai, Zongwu & Xiao, Zhijie, 2012. "Semiparametric quantile regression estimation in dynamic models with partially varying coefficients," Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
    13. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    14. anonymous, 1977. "Banking in the world economy," Economic Review, Federal Reserve Bank of San Francisco, issue Fall, pages 3-5.
    15. Nber, 1977. "Interaction in Economic Research," NBER Books, National Bureau of Economic Research, Inc, number unkn77-1.
    16. Ashley, Richard, 1998. "A new technique for postsample model selection and validation," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 647-665, May.
    17. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    18. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    19. Richard A. Meese & Andrew K. Rose, 1991. "An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 603-619.
    20. Teräsvirta, Timo, 1996. "Smooth Transition Models," SSE/EFI Working Paper Series in Economics and Finance 132, Stockholm School of Economics.
    21. Mizrach, B, 1992. "Multivariate Nearest-Neighbor Forecasts of EMS Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 151-163, Suppl. De.
    22. anonymous, 1977. "The economy in 1976," Federal Reserve Bulletin, Board of Governors of the Federal Reserve System (U.S.), issue Jan, pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Haiqiang & Li, Yingxing & Lin, Ming & Zhu, Yanli, 2018. "A Regime Shift Model with Nonparametric Switching Mechanism," IRTG 1792 Discussion Papers 2018-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2018. "Forecasting exchange rate using Variational Mode Decomposition and entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 15-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    2. Wang, Rudan & Morley, Bruce & Stamatogiannis, Michalis P., 2019. "Forecasting the exchange rate using nonlinear Taylor rule based models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 429-442.
    3. repec:wyi:journl:002135 is not listed on IDEAS
    4. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    5. Carlo Altavilla & Paul De Grauwe, 2010. "Non-linearities in the relation between the exchange rate and its fundamentals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-21.
    6. Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
    7. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    8. Milas Costas & Legrenzi Gabriella, 2006. "Non-linear Real Exchange Rate Effects in the UK Labour Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-34, March.
    9. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    10. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
    11. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    12. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    13. Mohamed Chikhi & Claude Diebolt, 2019. "Testing Nonlinearity through a Logistic Smooth Transition AR Model with Logistic Smooth Transition GARCH Errors," Working Papers of BETA 2019-06, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    14. Joao Sousa Andrade & António Portugal Duarte & Adelaide Duarte, 2013. "Testing for Nonlinear Adjustment in the Portuguese Target Zone: Is there a Honeymoon Effect?," EcoMod2013 5305, EcoMod.
    15. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    16. Zhang, Gioqinang & Hu, Michael Y., 1998. "Neural network forecasting of the British Pound/US Dollar exchange rate," Omega, Elsevier, vol. 26(4), pages 495-506, August.
    17. Corina SAMAN, 2015. "Out-Of-Sample Forecasting Performance Of A Robust Neural Exchange Rate Model Of Ron/Usd," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 93-106, March.
    18. Qi, Min & Wu, Yangru, 2003. "Nonlinear prediction of exchange rates with monetary fundamentals," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 623-640, December.
    19. Chihwa Kao & Yongmiao Hong, 2004. "Detecting Neglected Nonlinearity in Dynamic Panel Data with Time-Varying Conditional Heteroskedasticity," Econometric Society 2004 Far Eastern Meetings 753, Econometric Society.
    20. Craig, Lee A. & Holt, Matthew T., 2008. "Mechanical refrigeration, seasonality, and the hog-corn cycle in the United States: 1870-1940," Explorations in Economic History, Elsevier, vol. 45(1), pages 30-50, January.
    21. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.

    More about this item

    Keywords

    Nonlinearity; Out-of-sample forecasting; Semiparametric estimation; STAR model; Time-varying; C53; C14; C21;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:48:y:2015:i:1:p:407-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.