IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v36y2009i3p575-596.html
   My bibliography  Save this article

Testing time-homogeneity of rating transitions after origination of debt

Author

Listed:
  • Rafael Weißbach
  • Patrick Tschiersch
  • Claudia Lawrenz

Abstract

No abstract is available for this item.

Suggested Citation

  • Rafael Weißbach & Patrick Tschiersch & Claudia Lawrenz, 2009. "Testing time-homogeneity of rating transitions after origination of debt," Empirical Economics, Springer, vol. 36(3), pages 575-596, June.
  • Handle: RePEc:spr:empeco:v:36:y:2009:i:3:p:575-596
    DOI: 10.1007/s00181-008-0212-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-008-0212-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-008-0212-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    2. Jafry, Yusuf & Schuermann, Til, 2004. "Measurement, estimation and comparison of credit migration matrices," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2603-2639, November.
    3. Calem, Paul S. & LaCour-Little, Michael, 2004. "Risk-based capital requirements for mortgage loans," Journal of Banking & Finance, Elsevier, vol. 28(3), pages 647-672, March.
    4. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Weißbach & Wladislaw Poniatowski & Walter Krämer, 2013. "Nearest neighbor hazard estimation with left-truncated duration data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 33-47, January.
    2. Weißbach, Rafael & Walter, Ronja, 2010. "A likelihood ratio test for stationarity of rating transitions," Journal of Econometrics, Elsevier, vol. 155(2), pages 188-194, April.
    3. Voß, Sebastian & Weißbach, Rafael, 2014. "A score-test on measurement errors in rating transition times," Journal of Econometrics, Elsevier, vol. 180(1), pages 16-29.
    4. Weißbach, Rafael & Strohecker, Fynn, 2016. "Modeling rating transitions with instantaneous default," Economics Letters, Elsevier, vol. 145(C), pages 38-40.
    5. Weißbach, Rafael & Mollenhauer, Thomas, 2011. "Modelling Rating Transitions," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48698, Verein für Socialpolitik / German Economic Association.
    6. Rafael Weißbach & Dominik Wied, 2022. "Truncating the exponential with a uniform distribution," Statistical Papers, Springer, vol. 63(4), pages 1247-1270, August.
    7. Pedro Lencastre & Frank Raischel & Pedro G. Lind & Tim Rogers, 2014. "Are credit ratings time-homogeneous and Markov?," Papers 1403.8018, arXiv.org, revised Oct 2014.
    8. Rafael Weißbach & Carsten Lieres und Wilkau, 2010. "Economic capital for nonperforming loans," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 24(1), pages 67-85, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schechtman, Ricardo, 2013. "Default matrices: A complete measurement of banks’ consumer credit delinquency," Journal of Financial Stability, Elsevier, vol. 9(4), pages 460-474.
    2. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    3. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    4. Anisa Caja & Frédéric Planchet, 2014. "Modeling Cycle Dependence in Credit Insurance," Risks, MDPI, vol. 2(1), pages 1-15, March.
    5. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    6. Areski Cousin & Mohamed Reda Kheliouen, 2016. "A comparative study on the estimation of factor migration models," Working Papers halshs-01351926, HAL.
    7. Xing, Haipeng & Sun, Ning & Chen, Ying, 2012. "Credit rating dynamics in the presence of unknown structural breaks," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 78-89.
    8. Smith, Brent C, 2011. "Stability in consumer credit scores: Level and direction of FICO score drift as a precursor to mortgage default and prepayment," Journal of Housing Economics, Elsevier, vol. 20(4), pages 285-298.
    9. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "On sovereign credit migration: A study of alternative estimators and rating dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3448-3469, April.
    10. Biase di Giuseppe & Guglielmo D'Amico & Jacques Janssen & Raimondo Manca, 2014. "A Duration Dependent Rating Migration Model: Real Data Application and Cost of Capital Estimation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(3), pages 233-245, June.
    11. Valerio Vacca, 2017. "An Unexpected Crisis? Looking at Pricing Effectiveness of Heterogeneous Banks," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 46(2), pages 171-206, July.
    12. Hanson, Samuel & Schuermann, Til, 2006. "Confidence intervals for probabilities of default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2281-2301, August.
    13. Livingston, Miles & Naranjo, Andy & Zhou, Lei, 2008. "Split bond ratings and rating migration," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1613-1624, August.
    14. Lawrenz, Claudia & Tschiersch, Patrick & Weißbach, Rafael, 2005. "Testing Homogeneity of Time-Continuous Rating Transitions," Technical Reports 2005,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Tomáš Vaněk & David Hampel, 2017. "The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 759-776.
    16. Frydman, Halina & Schuermann, Til, 2008. "Credit rating dynamics and Markov mixture models," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1062-1075, June.
    17. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    18. Hill, Paula & Brooks, Robert & Faff, Robert, 2010. "Variations in sovereign credit quality assessments across rating agencies," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1327-1343, June.
    19. Tsaig, Yaakov & Levy, Amnon & Wang, Yashan, 2011. "Analyzing the impact of credit migration in a portfolio setting," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3145-3157.
    20. Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.

    More about this item

    Keywords

    Portfolio credit risk; Rating transitions; Markov model; Time-homogeneity; Likelihood ratio; C51; G11; G18; G33;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:36:y:2009:i:3:p:575-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.