IDEAS home Printed from https://ideas.repec.org/a/spr/elmark/v34y2024i1d10.1007_s12525-024-00734-y.html
   My bibliography  Save this article

AI-enabled information systems: Teaming up with intelligent agents in networked business

Author

Listed:
  • Peter Hofmann

    (University of Bayreuth
    appliedAI Initiative GmbH)

  • Nils Urbach

    (University of Bayreuth
    Frankfurt University of Applied Sciences
    Branch Business and Information Systems Engineering, Fraunhofer Institute for Applied Information Technology FIT)

  • Julia Lanzl

    (University of Bayreuth
    Chair of Digital Management, University of Hohenheim
    Branch Business and Information Systems Engineering, Fraunhofer Institute for Applied Information Technology FIT)

  • Kevin C. Desouza

    (Queensland University of Technology)

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter Hofmann & Nils Urbach & Julia Lanzl & Kevin C. Desouza, 2024. "AI-enabled information systems: Teaming up with intelligent agents in networked business," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-8, December.
  • Handle: RePEc:spr:elmark:v:34:y:2024:i:1:d:10.1007_s12525-024-00734-y
    DOI: 10.1007/s12525-024-00734-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12525-024-00734-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12525-024-00734-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    2. Justina Sidlauskiene & Yannick Joye & Vilte Auruskeviciene, 2023. "AI-based chatbots in conversational commerce and their effects on product and price perceptions," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-21, December.
    3. Diane Bailey & Samer Faraj & Pamela Hinds & Georg von Krogh & Paul Leonardi, 2019. "Special Issue of Organization Science: Emerging Technologies and Organizing," Organization Science, INFORMS, vol. 30(3), pages 642-646, May.
    4. Pinski, Marc & Hofmann, Thomas & Benlian, Alexander, 2024. "AI Literacy for the top management: An upper echelons perspective on corporate AI orientation and implementation ability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 144321, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    2. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    3. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    4. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    5. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    6. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    7. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    8. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    9. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    10. Poushneh, Atieh & Vasquez-Parraga, Arturo & Gearhart, Richard S., 2024. "The effect of empathetic response and consumers’ narcissism in voice-based artificial intelligence," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    11. Jialei Li & Wei Wang, 2024. "From Renting Economy to Sharing Economy: How Do Bike-Sharing Platforms Grow in the Digital Era?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 8097-8117, June.
    12. Joshua Holstein & Max Schemmer & Johannes Jakubik & Michael Vössing & Gerhard Satzger, 2023. "Sanitizing data for analysis: Designing systems for data understanding," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-18, December.
    13. Junwei Zhou & Yanguo Fan & Qingchun Guan & Guangyue Feng, 2024. "Research on Drought Monitoring Based on Deep Learning: A Case Study of the Huang-Huai-Hai Region in China," Land, MDPI, vol. 13(5), pages 1-20, May.
    14. Patrick Zschech, 2023. "Beyond descriptive taxonomies in data analytics: a systematic evaluation approach for data-driven method pipelines," Information Systems and e-Business Management, Springer, vol. 21(1), pages 193-227, March.
    15. Haessler, Philipp & Giones, Ferran & Brem, Alexander, 2023. "The who and how of commercializing emerging technologies: A technology-focused review," Technovation, Elsevier, vol. 121(C).
    16. Julius Peter Landwehr & Niklas Kühl & Jannis Walk & Mario Gnädig, 2022. "Design Knowledge for Deep-Learning-Enabled Image-Based Decision Support Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 707-728, December.
    17. Michael Weber & Martin Engert & Norman Schaffer & Jörg Weking & Helmut Krcmar, 2023. "Organizational Capabilities for AI Implementation—Coping with Inscrutability and Data Dependency in AI," Information Systems Frontiers, Springer, vol. 25(4), pages 1549-1569, August.
    18. Rashid Amin & Muzammal Majeed & Farrukh Shoukat Ali & Adeel Ahmed & Mudassar Hussain, 2022. "Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm," International Journal of Innovations in Science & Technology, 50sea, vol. 4(5), pages 158-172, July.
    19. Kalliopi Kanaki & Michail Kalogiannakis & Emmanouil Poulakis & Panagiotis Politis, 2022. "Investigating the Association between Algorithmic Thinking and Performance in Environmental Study," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    20. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:34:y:2024:i:1:d:10.1007_s12525-024-00734-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.