IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i2d10.1007_s10660-021-09488-7.html
   My bibliography  Save this article

Employing singular value decomposition and similarity criteria for alleviating cold start and sparse data in context-aware recommender systems

Author

Listed:
  • Keyvan Vahidy Rodpysh

    (Islamic Azad University)

  • Seyed Javad Mirabedini

    (Islamic Azad University)

  • Touraj Banirostam

    (Islamic Azad University)

Abstract

The recommender system’s primary purpose is to estimate the user’s desire and provide a list of items predicted from the appropriate information. Also, context-aware recommendation systems are becoming more and more favorite since they could provide more accurate or personalized recommendation information than traditional recommendation techniques. However, a context-aware recommendation system suffers from two fundamental limitations known as cold start and sparse data. Singular value decomposition has been successfully integrated with some traditional recommendation algorithms. However, the basic singular value decomposition can only extract the feature vectors of users and items, resulting in lower recommendation precision. To improve the recommendation performance and reduce the challenge of cold start and sparse data, we propose a new context-aware recommendation algorithm, named CSSVD. First, in the CSSVD matrix, using the IFPCC and DPCC similarity criteria, the item’s user property attribute matrices are created, respectively, creating the SSVD matrix for the cold start problem. In the second step, through the CWP similarity criterion on the contextual information, the context matrix is created, which according to the SSVD matrix created in the previous step, creates a three-dimensional matrix based on tensor properties, providing the problem of sparse data. We have used the IMDB and STS data collection because of implementing user features, item features, and contextual data for analyzing the recommended method. Experiential results illustrate that the proposed algorithm CSSVD is better than TF, HOSVD, BPR, and CTLSVD in terms of Precision, Recall, F-score, and NDCG measure.Results show the improvement of the recommendations to users through alleviating cold start and sparse data.

Suggested Citation

  • Keyvan Vahidy Rodpysh & Seyed Javad Mirabedini & Touraj Banirostam, 2023. "Employing singular value decomposition and similarity criteria for alleviating cold start and sparse data in context-aware recommender systems," Electronic Commerce Research, Springer, vol. 23(2), pages 681-707, June.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:2:d:10.1007_s10660-021-09488-7
    DOI: 10.1007/s10660-021-09488-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-021-09488-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-021-09488-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Syed Manzar Abbas & Khubaib Amjad Alam & Shahaboddin Shamshirband, 2019. "A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems," Mathematics, MDPI, vol. 7(8), pages 1-36, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundaresan Bhaskaran & Raja Marappan & Balachandran Santhi, 2021. "Design and Analysis of a Cluster-Based Intelligent Hybrid Recommendation System for E-Learning Applications," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
    2. S. Bhaskaran & Raja Marappan & B. Santhi, 2020. "Design and Comparative Analysis of New Personalized Recommender Algorithms with Specific Features for Large Scale Datasets," Mathematics, MDPI, vol. 8(7), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:2:d:10.1007_s10660-021-09488-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.