IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i8p740-d257000.html
   My bibliography  Save this article

A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems

Author

Listed:
  • Syed Manzar Abbas

    (Department of Computer Science, National University of Computer and Emerging Sciences (FAST-NUCES), Islamabad 44000, Pakistan
    These authors contributed equally to this work.)

  • Khubaib Amjad Alam

    (Department of Computer Science, National University of Computer and Emerging Sciences (FAST-NUCES), Islamabad 44000, Pakistan
    These authors contributed equally to this work.)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam)

Abstract

Context-aware video recommender systems (CAVRS) seek to improve recommendation performance by incorporating contextual features along with the conventional user-item ratings used by video recommender systems. In addition, the selection of influential and relevant contexts has a significant effect on the performance of CAVRS. However, it is not guaranteed that, under the same contextual scenario, all the items are evaluated by users for providing dense contextual ratings. This problem cause contextual sparsity in CAVRS because the influence of each contextual factor in traditional CAVRS assumes the weights of contexts homogeneously for each of the recommendations. Hence, the selection of influencing contexts with minimal conflicts is identified as a potential research challenge. This study aims at resolving the contextual sparsity problem to leverage user interactions at varying contexts with an item in CAVRS. This problem may be investigated by considering a formal approximation of contextual attributes. For the purpose of improving the accuracy of recommendation process, we have proposed a novel contextual information selection process using Soft-Rough Sets. The proposed model will select a minimal set of influencing contexts using a weights assign process by Soft-Rough sets. Moreover, the proposed algorithm has been extensively evaluated using “ LDOS-CoMoDa ” dataset, and the outcome signifies the accuracy of our approach in handling contextual sparsity by exploiting relevant contextual factors. The proposed model outperforms existing solutions by identifying relevant contexts efficiently based on certainty, strength, and relevancy for effective recommendations.

Suggested Citation

  • Syed Manzar Abbas & Khubaib Amjad Alam & Shahaboddin Shamshirband, 2019. "A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems," Mathematics, MDPI, vol. 7(8), pages 1-36, August.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:740-:d:257000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/8/740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/8/740/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keyvan Vahidy Rodpysh & Seyed Javad Mirabedini & Touraj Banirostam, 2023. "Employing singular value decomposition and similarity criteria for alleviating cold start and sparse data in context-aware recommender systems," Electronic Commerce Research, Springer, vol. 23(2), pages 681-707, June.
    2. S. Bhaskaran & Raja Marappan & B. Santhi, 2020. "Design and Comparative Analysis of New Personalized Recommender Algorithms with Specific Features for Large Scale Datasets," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    3. Sundaresan Bhaskaran & Raja Marappan & Balachandran Santhi, 2021. "Design and Analysis of a Cluster-Based Intelligent Hybrid Recommendation System for E-Learning Applications," Mathematics, MDPI, vol. 9(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:740-:d:257000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.