IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v8y2018i2d10.1007_s13235-017-0223-9.html
   My bibliography  Save this article

One-Dimensional Stationary Mean-Field Games with Local Coupling

Author

Listed:
  • Diogo A. Gomes

    (King Abdullah University of Science and Technology (KAUST))

  • Levon Nurbekyan

    (King Abdullah University of Science and Technology (KAUST))

  • Mariana Prazeres

    (King Abdullah University of Science and Technology (KAUST))

Abstract

A standard assumption in mean-field game (MFG) theory is that the coupling between the Hamilton–Jacobi equation and the transport equation is monotonically non-decreasing in the density of the population. In many cases, this assumption implies the existence and uniqueness of solutions. Here, we drop that assumption and construct explicit solutions for one-dimensional MFGs. These solutions exhibit phenomena not present in monotonically increasing MFGs: low-regularity, non-uniqueness, and the formation of regions with no agents.

Suggested Citation

  • Diogo A. Gomes & Levon Nurbekyan & Mariana Prazeres, 2018. "One-Dimensional Stationary Mean-Field Games with Local Coupling," Dynamic Games and Applications, Springer, vol. 8(2), pages 315-351, June.
  • Handle: RePEc:spr:dyngam:v:8:y:2018:i:2:d:10.1007_s13235-017-0223-9
    DOI: 10.1007/s13235-017-0223-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-017-0223-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-017-0223-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessio Porretta, 2014. "On the Planning Problem for the Mean Field Games System," Dynamic Games and Applications, Springer, vol. 4(2), pages 231-256, June.
    2. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.
    3. P. Cardaliaguet, 2013. "Long Time Average of First Order Mean Field Games and Weak KAM Theory," Dynamic Games and Applications, Springer, vol. 3(4), pages 473-488, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diogo Aguiar Gomes & Ricardo de Lima Ribeiro, 2021. "Stationary mean-field games with logistic effects," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-34, February.
    2. Alberto Bressan & Khai T. Nguyen, 2023. "Generic Properties of First-Order Mean Field Games," Dynamic Games and Applications, Springer, vol. 13(3), pages 750-782, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noha Almulla & Rita Ferreira & Diogo Gomes, 2017. "Two Numerical Approaches to Stationary Mean-Field Games," Dynamic Games and Applications, Springer, vol. 7(4), pages 657-682, December.
    2. Piotr Więcek, 2020. "Discrete-Time Ergodic Mean-Field Games with Average Reward on Compact Spaces," Dynamic Games and Applications, Springer, vol. 10(1), pages 222-256, March.
    3. Paulo B. Brito, 2022. "The dynamics of growth and distribution in a spatially heterogeneous world," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 311-350, September.
    4. Arthur Fleig & Roberto Guglielmi, 2017. "Optimal Control of the Fokker–Planck Equation with Space-Dependent Controls," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 408-427, August.
    5. V. N. Kolokoltsov & O. A. Malafeyev, 2018. "Corruption and botnet defense: a mean field game approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 977-999, September.
    6. Naci Saldi & Tamer Başar & Maxim Raginsky, 2019. "Approximate Nash Equilibria in Partially Observed Stochastic Games with Mean-Field Interactions," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1006-1033, August.
    7. Alberto Bressan & Khai T. Nguyen, 2023. "Generic Properties of First-Order Mean Field Games," Dynamic Games and Applications, Springer, vol. 13(3), pages 750-782, September.
    8. Hoang, Lê Nguyên & Soumis, François & Zaccour, Georges, 2019. "The return function: A new computable perspective on Bayesian–Nash equilibria," European Journal of Operational Research, Elsevier, vol. 279(2), pages 471-485.
    9. Diogo A. Gomes & João Saúde, 2021. "A Mean-Field Game Approach to Price Formation," Dynamic Games and Applications, Springer, vol. 11(1), pages 29-53, March.
    10. Luo, Peng & Tangpi, Ludovic, 2024. "Laplace principle for large population games with control interaction," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    11. V. N. Kolokoltsov & O. A. Malafeyev, 2017. "Mean-Field-Game Model of Corruption," Dynamic Games and Applications, Springer, vol. 7(1), pages 34-47, March.
    12. Naci Saldi & Tamer Bas¸ ar & Maxim Raginsky, 2020. "Approximate Markov-Nash Equilibria for Discrete-Time Risk-Sensitive Mean-Field Games," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1596-1620, November.
    13. Naci Saldi & Tamer Başar & Maxim Raginsky, 2023. "Partially Observed Discrete-Time Risk-Sensitive Mean Field Games," Dynamic Games and Applications, Springer, vol. 13(3), pages 929-960, September.
    14. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2021. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Dynamic Games and Applications, Springer, vol. 11(3), pages 463-490, September.
    15. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.
    16. Berkay Anahtarci & Can Deha Kariksiz & Naci Saldi, 2023. "Q-Learning in Regularized Mean-field Games," Dynamic Games and Applications, Springer, vol. 13(1), pages 89-117, March.
    17. Martin Frank & Michael Herty & Torsten Trimborn, 2019. "Microscopic Derivation of Mean Field Game Models," Papers 1910.13534, arXiv.org.
    18. Fabio Bagagiolo & Dario Bauso & Raffaele Pesenti, 2016. "Mean-Field Game Modeling the Bandwagon Effect with Activation Costs," Dynamic Games and Applications, Springer, vol. 6(4), pages 456-476, December.
    19. Yongxin Chen & Tryphon T. Georgiou & Michele Pavon, 2018. "Steering the Distribution of Agents in Mean-Field Games System," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 332-357, October.
    20. Dario Bauso & Hamidou Tembine & Tamer Başar, 2016. "Robust Mean Field Games," Dynamic Games and Applications, Springer, vol. 6(3), pages 277-303, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:8:y:2018:i:2:d:10.1007_s13235-017-0223-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.