IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v3y2013i4p473-488.html
   My bibliography  Save this article

Long Time Average of First Order Mean Field Games and Weak KAM Theory

Author

Listed:
  • P. Cardaliaguet

Abstract

We show that the long time average of solutions of first order mean field game systems in finite horizon is governed by an ergodic system of mean field game type. The well-posedness of the latter system and the uniqueness of the ergodic constant rely on weak KAM theory. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • P. Cardaliaguet, 2013. "Long Time Average of First Order Mean Field Games and Weak KAM Theory," Dynamic Games and Applications, Springer, vol. 3(4), pages 473-488, December.
  • Handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:473-488
    DOI: 10.1007/s13235-013-0091-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13235-013-0091-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13235-013-0091-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Więcek, 2020. "Discrete-Time Ergodic Mean-Field Games with Average Reward on Compact Spaces," Dynamic Games and Applications, Springer, vol. 10(1), pages 222-256, March.
    2. Martin Frank & Michael Herty & Torsten Trimborn, 2019. "Microscopic Derivation of Mean Field Game Models," Papers 1910.13534, arXiv.org.
    3. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.
    4. Piermarco Cannarsa & Wei Cheng & Cristian Mendico & Kaizhi Wang, 2020. "Long-Time Behavior of First-Order Mean Field Games on Euclidean Space," Dynamic Games and Applications, Springer, vol. 10(2), pages 361-390, June.
    5. Diogo A. Gomes & Levon Nurbekyan & Mariana Prazeres, 2018. "One-Dimensional Stationary Mean-Field Games with Local Coupling," Dynamic Games and Applications, Springer, vol. 8(2), pages 315-351, June.
    6. Olivier Gallay & Fariba Hashemi & Max-Olivier Hongler, 2019. "Imitation, Proximity, And Growth — A Collective Swarm Dynamics Approach," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-43, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:473-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.