IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v10y2020i4d10.1007_s13235-019-00309-z.html
   My bibliography  Save this article

A Dynamic Game Approach for Demand-Side Management: Scheduling Energy Storage with Forecasting Errors

Author

Listed:
  • Matthias Pilz

    (Kingston University London)

  • Luluwah Al-Fagih

    (Kingston University London)

Abstract

Smart metering infrastructure allows for two-way communication and power transfer. Based on this promising technology, we propose a demand-side management (DSM) scheme for a residential neighbourhood of prosumers. Its core is a discrete time dynamic game to schedule individually owned home energy storage. The system model includes an advanced battery model, local generation of renewable energy, and forecasting errors for demand and generation. We derive a closed-form solution for the best response problem of a player and construct an iterative algorithm to solve the game. Empirical analysis shows exponential convergence towards the Nash equilibrium. A comparison of a DSM scheme with a static game reveals the advantages of the dynamic game approach. We provide an extensive analysis on the influence of the forecasting error on the outcome of the game. A key result demonstrates that our approach is robust even in the worst-case scenario. This grants considerable gains for the utility company organising the DSM scheme and its participants.

Suggested Citation

  • Matthias Pilz & Luluwah Al-Fagih, 2020. "A Dynamic Game Approach for Demand-Side Management: Scheduling Energy Storage with Forecasting Errors," Dynamic Games and Applications, Springer, vol. 10(4), pages 897-929, December.
  • Handle: RePEc:spr:dyngam:v:10:y:2020:i:4:d:10.1007_s13235-019-00309-z
    DOI: 10.1007/s13235-019-00309-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-019-00309-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-019-00309-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nie, Pu-yan & Chen, Li-hua & Fukushima, Masao, 2006. "Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers," European Journal of Operational Research, Elsevier, vol. 169(1), pages 310-328, February.
    2. O. Bahn & A. Haurie & R. Malhamé, 2009. "A Stochastic Control/Game Approach to the Optimal Timing of Climate Policies," International Series in Operations Research & Management Science, in: Jerzy A. Filar & Alain Haurie (ed.), Uncertainty and Environmental Decision Making, chapter 0, pages 211-237, Springer.
    3. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    4. Olaszi, Balint D. & Ladanyi, Jozsef, 2017. "Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 710-718.
    5. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Ashot N. Harutyunyan & Hendrik C. Ferreira, 2017. "Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    6. Kai Ma & Shubing Hu & Jie Yang & Chunxia Dou & Josep M. Guerrero, 2017. "Energy Trading and Pricing in Microgrids with Uncertain Energy Supply: A Three-Stage Hierarchical Game Approach," Energies, MDPI, vol. 10(5), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilal Masood & Song Guobing & Jamel Nebhen & Ateeq Ur Rehman & Muhammad Naveed Iqbal & Iftikhar Rasheed & Mohit Bajaj & Muhammad Shafiq & Habib Hamam, 2022. "Investigation and Field Measurements for Demand Side Management Control Technique of Smart Air Conditioners located at Residential, Commercial, and Industrial Sites," Energies, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    3. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    4. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    5. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    6. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    7. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    8. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    9. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    10. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    11. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    12. Nadine Székely & Jan vom Brocke, 2017. "What can we learn from corporate sustainability reporting? Deriving propositions for research and practice from over 9,500 corporate sustainability reports published between 1999 and 2015 using topic ," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    13. Frank Hensgen & Michael Wachendorf, 2018. "Aqueous Leaching Prior to Dewatering Improves the Quality of Solid Fuels from Grasslands," Energies, MDPI, vol. 11(4), pages 1-13, April.
    14. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    15. Mumuh Muhsin Z. & Nina Herlina & Miftahul Falah & Etty Saringendyanti & Kunto Sofianto & Norlaila Md Zin, 2021. "Impact of Climate Change on Agriculture Sector of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 138-144.
    16. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    17. Sara Sousa, 2021. "Environmental Taxation in Portugal: A Contribution to Sustainability," Eurasian Studies in Business and Economics, in: Mehmet Huseyin Bilgin & Hakan Danis & Ender Demir & Sofia Vale (ed.), Eurasian Economic Perspectives, pages 369-382, Springer.
    18. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    19. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Hendrik C. Ferreira & A. J. Han Vinck, 2017. "Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    20. Tükenmez, Mine & Demireli, Erhan, 2012. "Renewable energy policy in Turkey with the new legal regulations," Renewable Energy, Elsevier, vol. 39(1), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:10:y:2020:i:4:d:10.1007_s13235-019-00309-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.