IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-1129-2_7.html
   My bibliography  Save this book chapter

A Stochastic Control/Game Approach to the Optimal Timing of Climate Policies

In: Uncertainty and Environmental Decision Making

Author

Listed:
  • O. Bahn

    (GERAD and MQG, HEC Montréal)

  • A. Haurie

    (GERAD-HEC, Montréal and ORDECSYS)

  • R. Malhamé

    (GERAD and Ecole Polytechnique)

Abstract

This chapter deals with an application of stochastic control or stochastic game methods to the design of optimal timing of climate policies. In the first part, we propose a stochastic control approach for a cost-benefit model that takes into account the uncertainty on the access to a backstop (clean) technology. In a second part, we show how this model can be extended to a game theoretic framework, assuming non-cooperative behavior of two groups of countries that are affected by climate change related damages induced by their joint greenhouse gas emissions. Finally we discuss the possibility of implementing successive control synthesis cycles preceded by learning cycles concerning climate sensitivity statistics.

Suggested Citation

  • O. Bahn & A. Haurie & R. Malhamé, 2009. "A Stochastic Control/Game Approach to the Optimal Timing of Climate Policies," International Series in Operations Research & Management Science, in: Jerzy A. Filar & Alain Haurie (ed.), Uncertainty and Environmental Decision Making, chapter 0, pages 211-237, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-1129-2_7
    DOI: 10.1007/978-1-4419-1129-2_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Pilz & Luluwah Al-Fagih, 2020. "A Dynamic Game Approach for Demand-Side Management: Scheduling Energy Storage with Forecasting Errors," Dynamic Games and Applications, Springer, vol. 10(4), pages 897-929, December.
    2. Biying Yu & Zihao Zhao & Yi-Ming Wei & Lan-Cui Liu & Qingyu Zhao & Shuo Xu & Jia-Ning Kang & Hua Liao, 2023. "Approaching national climate targets in China considering the challenge of regional inequality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-1129-2_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.