IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v44y2021i2d10.1007_s10203-021-00332-z.html
   My bibliography  Save this article

Gaussian clustering and jump-diffusion models of electricity prices: a deep learning analysis

Author

Listed:
  • Carlo Mari

    (University of Chieti-Pescara)

  • Emiliano Mari

Abstract

We propose a deep learning-based methodology to investigate the complex dynamics of electricity prices observed in power markets. The aims are: (a) to process missing data in power price time series with irregular observation times; (b) to detect a Gaussian component in the log-return empirical distributions if there is one; (c) to define suitable stochastic models of the dynamics of power prices. We apply this methodology to US wholesale electricity price time series which are characterized by missing data, high volatility, jumps and spikes. To this end, a multi-layer neural network is built and trained based on a dataset containing information on market prices, traded volumes, numbers of trades and counterparties. The forecasts of the trained neural network are used to fill the gaps in the electricity price time series. Starting with the no-gap reconstructed electricity price time series, clustering techniques are then used to identify the largest Gaussian cluster in the log-return empirical distribution. In each market under investigation, we found that log-returns show considerably large Gaussian clusters. This fact allows us to decouple normal stable periods in which log-returns present Gaussian behavior from turbulent periods in which jumps and spikes occur. The decoupling between the stable motion and the turbulent motion enabled us to define suitable mean-reverting jump-diffusion models of power prices and provide an estimation procedure that makes use of the full information contained in both the Gaussian component and the jumpy component of the log-return distribution. The results obtained demonstrate an interesting agreement with empirical data.

Suggested Citation

  • Carlo Mari & Emiliano Mari, 2021. "Gaussian clustering and jump-diffusion models of electricity prices: a deep learning analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1039-1062, December.
  • Handle: RePEc:spr:decfin:v:44:y:2021:i:2:d:10.1007_s10203-021-00332-z
    DOI: 10.1007/s10203-021-00332-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-021-00332-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-021-00332-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    2. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    3. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    4. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    5. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    6. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    7. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Strategic bidding and rebidding in electricity markets," Energy Economics, Elsevier, vol. 59(C), pages 24-36.
    8. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    9. French, Kenneth R., 1980. "Stock returns and the weekend effect," Journal of Financial Economics, Elsevier, vol. 8(1), pages 55-69, March.
    10. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    11. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    12. Mari, Carlo, 2006. "Regime-switching characterization of electricity prices dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 552-564.
    13. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    14. repec:dau:papers:123456789/1433 is not listed on IDEAS
    15. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    16. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    17. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    18. Paraschiv, Florentina & Fleten, Stein-Erik & Schürle, Michael, 2015. "A spot-forward model for electricity prices with regime shifts," Energy Economics, Elsevier, vol. 47(C), pages 142-153.
    19. Victor Gómez & Agustin Maravall & Daniel Peña, 1999. "Missing observations in ARIMA models: Skipping strategy versus outlier approach," Working Papers 9701, Banco de España.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Mari & Cristiano Baldassari, 2021. "Ensemble Methods for Jump-Diffusion Models of Power Prices," Energies, MDPI, vol. 14(8), pages 1-17, April.
    2. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    3. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    4. Mari, Carlo & Cananà, Lucianna, 2012. "Markov switching of the electricity supply curve and power prices dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1481-1488.
    5. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    6. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
    7. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    8. Alain Monfort & Olivier Féron, 2012. "Joint econometric modeling of spot electricity prices, forwards and options," Review of Derivatives Research, Springer, vol. 15(3), pages 217-256, October.
    9. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    10. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    11. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    12. Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
    13. Koch, Torben & Vargiolu, Tiziano, 2019. "Optimal Installation of Solar Panels with Price Impact: a Solvable Singular Stochastic Control Problem," Center for Mathematical Economics Working Papers 627, Center for Mathematical Economics, Bielefeld University.
    14. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    15. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    16. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    17. Fernandes, Mário Correia & Dias, José Carlos & Nunes, João Pedro Vidal, 2021. "Modeling energy prices under energy transition: A novel stochastic-copula approach," Economic Modelling, Elsevier, vol. 105(C).
    18. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    19. Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
    20. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.

    More about this item

    Keywords

    Electricity prices; Deep learning; Gaussian clusters; Jump-diffusion dynamics; Regime-switching dynamics; Mean-reversion; Lévy distributions;
    All these keywords.

    JEL classification:

    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:44:y:2021:i:2:d:10.1007_s10203-021-00332-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.