IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v38y2015i2p119-146.html
   My bibliography  Save this article

Term structure of interest rates estimation using rational Chebyshev functions

Author

Listed:
  • Polychronis Manousopoulos
  • Michalis Michalopoulos

Abstract

We present a novel method for modeling yield curves using rational Chebyshev functions. Our motivation is based on both their suitable mathematical properties as well as their successful application record, mainly in nonfinancial areas. We provide an interpretation of the proposed model in terms of a level–slope–curvature perspective, and we indicate methods for identifying the model’s parameters based on this interpretation. We present the results of in-sample and out-of-sample tests of the proposed model in comparison with popular parsimonious models. The tests indicate that the proposed model is competitive in terms of its performance as well as its properties. Copyright Springer-Verlag Italia 2015

Suggested Citation

  • Polychronis Manousopoulos & Michalis Michalopoulos, 2015. "Term structure of interest rates estimation using rational Chebyshev functions," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(2), pages 119-146, October.
  • Handle: RePEc:spr:decfin:v:38:y:2015:i:2:p:119-146
    DOI: 10.1007/s10203-014-0161-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10203-014-0161-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10203-014-0161-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Mallee, Max I. P. & Van der Wel, Michel, 2010. "Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson–Siegel Model With Time-Varying Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 329-343.
    2. Diebold, Francis X. & Li, Canlin & Yue, Vivian Z., 2008. "Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach," Journal of Econometrics, Elsevier, vol. 146(2), pages 351-363, October.
    3. Guglielmo Caporale & Mario Cerrato, 2010. "Using Chebyshev Polynomials to Approximate Partial Differential Equations," Computational Economics, Springer;Society for Computational Economics, vol. 35(3), pages 235-244, March.
    4. Manousopoulos, Polychronis & Michalopoulos, Michalis, 2009. "Comparison of non-linear optimization algorithms for yield curve estimation," European Journal of Operational Research, Elsevier, vol. 192(2), pages 594-602, January.
    5. Nicola Anderson & John Sleath, 2001. "New estimates of the UK real and nominal yield curves," Bank of England working papers 126, Bank of England.
    6. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    7. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    8. Roger Lord & Antoon Pelsser, 2007. "Level-Slope-Curvature - Fact or Artefact?," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 105-130.
    9. Pham, Toan M., 1998. "Estimation of the term structure of interest rates: an international perspective," Journal of Multinational Financial Management, Elsevier, vol. 8(2-3), pages 265-283, September.
    10. David Bolder & Scott Gusba, 2002. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada," Staff Working Papers 02-29, Bank of Canada.
    11. McCulloch, J Huston, 1975. "The Tax-Adjusted Yield Curve," Journal of Finance, American Finance Association, vol. 30(3), pages 811-830, June.
    12. Dangl, Thomas & Wirl, Franz, 2004. "Investment under uncertainty: calculating the value function when the Bellman equation cannot be solved analytically," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1437-1460, April.
    13. Daniel F. Waggoner, 1997. "Spline methods for extracting interest rate curves from coupon bond prices," FRB Atlanta Working Paper 97-10, Federal Reserve Bank of Atlanta.
    14. Liliana Forzani & Carlos Tolmasky, 2003. "A Family Of Models Explaining The Level-Slope-Curvature Effect," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(03), pages 239-255.
    15. Nyholm, Ken & Vidova-Koleva, Rositsa, 2010. "Nelson-Siegel, affine and quadratic yield curve specifications: which one is better at forecasting?," Working Paper Series 1205, European Central Bank.
    16. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    17. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Emre Alper & Aras Akdemir & Kazim Kazimov, 2004. "Estimating the Term Structure of Government Securities in Turkey," Working Papers 2004/03, Bogazici University, Department of Economics.
    2. M�rcio Poletti Laurini, 2014. "Dynamic functional data analysis with non-parametric state space models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 142-163, January.
    3. Laurini, Márcio Poletti & Ohashi, Alberto, 2015. "A noisy principal component analysis for forward rate curves," European Journal of Operational Research, Elsevier, vol. 246(1), pages 140-153.
    4. Yallup, Peter J., 2012. "Models of the yield curve and the curvature of the implied forward rate function," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 121-135.
    5. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
    6. Alejandro Mosiño, 2012. "Using Chebyshev Polynomials to Approximate Partial Differential Equations: A Reply," Computational Economics, Springer;Society for Computational Economics, vol. 39(1), pages 13-27, January.
    7. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.
    8. Emrah Ahi & Vedat Akgiray & Emrah Sener, 2018. "Robust term structure estimation in developed and emerging markets," Annals of Operations Research, Springer, vol. 260(1), pages 23-49, January.
    9. Shin, Minchul & Zhong, Molin, 2017. "Does realized volatility help bond yield density prediction?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 373-389.
    10. Gurkaynak, Refet S. & Sack, Brian & Wright, Jonathan H., 2007. "The U.S. Treasury yield curve: 1961 to the present," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2291-2304, November.
    11. Meldrum, Andrew & Raczko, Marek & Spencer, Peter, 2016. "Overseas unspanned factors and domestic bond returns," Bank of England working papers 618, Bank of England.
    12. Vadim Kaushanskiy & Victor Lapshin, 2016. "A nonparametric method for term structure fitting with automatic smoothing," Applied Economics, Taylor & Francis Journals, vol. 48(58), pages 5654-5666, December.
    13. Bredin, Don & O'Sullivan, Conall & Spencer, Simon, 2021. "Forecasting WTI crude oil futures returns: Does the term structure help?," Energy Economics, Elsevier, vol. 100(C).
    14. Ganchev, Alexander, 2009. "Modeling the yield curve of spot interest rates under the conditions in Bulgaria," MPRA Paper 70048, University Library of Munich, Germany.
    15. Lorenčič Eva, 2016. "Testing the Performance of Cubic Splines and Nelson-Siegel Model for Estimating the Zero-coupon Yield Curve," Naše gospodarstvo/Our economy, Sciendo, vol. 62(2), pages 42-50, June.
    16. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    17. Faria, Adriano & Almeida, Caio, 2018. "A hybrid spline-based parametric model for the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 72-94.
    18. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    19. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    20. Lauren Stagnol, 2017. "Introducing global term structure in a risk parity framework," Working Papers hal-04141648, HAL.

    More about this item

    Keywords

    Yield curve; Term structure of interest rates; Rational Chebyshev functions; C51; E43; G12;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:38:y:2015:i:2:p:119-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.