IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v87y2024i1d10.1007_s10589-023-00521-z.html
   My bibliography  Save this article

Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization

Author

Listed:
  • Zichong Li

    (Rensselaer Polytechnic Institute)

  • Pin-Yu Chen

    (Thomas J. Watson Research Center)

  • Sijia Liu

    (Michigan State University)

  • Songtao Lu

    (Thomas J. Watson Research Center)

  • Yangyang Xu

    (Rensselaer Polytechnic Institute)

Abstract

Many real-world problems not only have complicated nonconvex functional constraints but also use a large number of data points. This motivates the design of efficient stochastic methods on finite-sum or expectation constrained problems. In this paper, we design and analyze stochastic inexact augmented Lagrangian methods (Stoc-iALM) to solve problems involving a nonconvex composite (i.e. smooth + nonsmooth) objective and nonconvex smooth functional constraints. We adopt the standard iALM framework and design a subroutine by using the momentum-based variance-reduced proximal stochastic gradient method (PStorm) and a postprocessing step. Under certain regularity conditions (assumed also in existing works), to reach an $$\varepsilon $$ ε -KKT point in expectation, we establish an oracle complexity result of $$O(\varepsilon ^{-5})$$ O ( ε - 5 ) , which is better than the best-known $$O(\varepsilon ^{-6})$$ O ( ε - 6 ) result. Numerical experiments on the fairness constrained problem and the Neyman–Pearson classification problem with real data demonstrate that our proposed method outperforms an existing method with the previously best-known complexity result.

Suggested Citation

  • Zichong Li & Pin-Yu Chen & Sijia Liu & Songtao Lu & Yangyang Xu, 2024. "Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization," Computational Optimization and Applications, Springer, vol. 87(1), pages 117-147, January.
  • Handle: RePEc:spr:coopap:v:87:y:2024:i:1:d:10.1007_s10589-023-00521-z
    DOI: 10.1007/s10589-023-00521-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00521-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00521-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:inm:orijoo:v:3:y:2021:i:4:p:373-397 is not listed on IDEAS
    2. Yangyang Xu & Yibo Xu, 2023. "Momentum-Based Variance-Reduced Proximal Stochastic Gradient Method for Composite Nonconvex Stochastic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 266-297, January.
    3. Qihang Lin & Runchao Ma & Yangyang Xu, 2022. "Complexity of an inexact proximal-point penalty method for constrained smooth non-convex optimization," Computational Optimization and Applications, Springer, vol. 82(1), pages 175-224, May.
    4. Guanghui Lan & Zhiqiang Zhou, 2020. "Algorithms for stochastic optimization with function or expectation constraints," Computational Optimization and Applications, Springer, vol. 76(2), pages 461-498, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bingkang & Zhao, Huiru & Wang, Xuejie & Zhao, Yihang & Zhang, Yuanyuan & Lu, Hao & Wang, Yuwei, 2022. "Distributionally robust offering strategy of the aggregator integrating renewable energy generator and energy storage considering uncertainty and connections between the mid-to-long-term and spot elec," Renewable Energy, Elsevier, vol. 201(P1), pages 400-417.
    2. Lingzi Jin & Xiao Wang, 2022. "A stochastic primal-dual method for a class of nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 143-180, September.
    3. Jefferson G. Melo & Renato D. C. Monteiro & Hairong Wang, 2024. "A Proximal Augmented Lagrangian Method for Linearly Constrained Nonconvex Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 388-420, July.
    4. Liwei Zhang & Yule Zhang & Jia Wu & Xiantao Xiao, 2022. "Solving Stochastic Optimization with Expectation Constraints Efficiently by a Stochastic Augmented Lagrangian-Type Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2989-3006, November.
    5. Yuanyuan, Zhang & Huiru, Zhao & Bingkang, Li, 2023. "Distributionally robust comprehensive declaration strategy of virtual power plant participating in the power market considering flexible ramping product and uncertainties," Applied Energy, Elsevier, vol. 343(C).
    6. Qingsong Wang & Chunfeng Cui & Deren Han, 2023. "Accelerated Doubly Stochastic Gradient Descent for Tensor CP Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 665-704, May.
    7. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.
    8. Drew P. Kouri & Mathias Staudigl & Thomas M. Surowiec, 2023. "A relaxation-based probabilistic approach for PDE-constrained optimization under uncertainty with pointwise state constraints," Computational Optimization and Applications, Springer, vol. 85(2), pages 441-478, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:87:y:2024:i:1:d:10.1007_s10589-023-00521-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.