IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v85y2023i1d10.1007_s10589-023-00451-w.html
   My bibliography  Save this article

An inexact Riemannian proximal gradient method

Author

Listed:
  • Wen Huang

    (Xiamen University)

  • Ke Wei

    (Fudan University)

Abstract

This paper considers the problem of minimizing the summation of a differentiable function and a nonsmooth function on a Riemannian manifold. In recent years, proximal gradient method and its variants have been generalized to the Riemannian setting for solving such problems. Different approaches to generalize the proximal mapping to the Riemannian setting lead different versions of Riemannian proximal gradient methods. However, their convergence analyses all rely on solving their Riemannian proximal mapping exactly, which is either too expensive or impracticable. In this paper, we study the convergence of an inexact Riemannian proximal gradient method. It is proven that if the proximal mapping is solved sufficiently accurately, then the global convergence and local convergence rate based on the Riemannian Kurdyka–Łojasiewicz property can be guaranteed. Moreover, practical conditions on the accuracy for solving the Riemannian proximal mapping are provided. As a byproduct, the proximal gradient method on the Stiefel manifold proposed in Chen et al. [SIAM J Optim 30(1):210–239, 2020] can be viewed as the inexact Riemannian proximal gradient method provided the proximal mapping is solved to certain accuracy. Finally, numerical experiments on sparse principal component analysis are conducted to test the proposed practical conditions.

Suggested Citation

  • Wen Huang & Ke Wei, 2023. "An inexact Riemannian proximal gradient method," Computational Optimization and Applications, Springer, vol. 85(1), pages 1-32, May.
  • Handle: RePEc:spr:coopap:v:85:y:2023:i:1:d:10.1007_s10589-023-00451-w
    DOI: 10.1007/s10589-023-00451-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00451-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00451-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinsi Wang & Wei Hong Yang, 2024. "An adaptive regularized proximal Newton-type methods for composite optimization over the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 89(2), pages 419-457, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    2. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    3. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    4. Yuqia Wu & Shaohua Pan & Shujun Bi, 2021. "Kurdyka–Łojasiewicz Property of Zero-Norm Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 94-112, January.
    5. Shuqin Sun & Ting Kei Pong, 2023. "Doubly iteratively reweighted algorithm for constrained compressed sensing models," Computational Optimization and Applications, Springer, vol. 85(2), pages 583-619, June.
    6. Yaohua Hu & Chong Li & Kaiwen Meng & Xiaoqi Yang, 2021. "Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 853-883, April.
    7. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    8. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    9. Wei Peng & Hui Zhang & Xiaoya Zhang, 2019. "Nonconvex Proximal Incremental Aggregated Gradient Method with Linear Convergence," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 230-245, October.
    10. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    11. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    12. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    13. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    14. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    15. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    16. Zhili Ge & Zhongming Wu & Xin Zhang & Qin Ni, 2023. "An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 821-844, August.
    17. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    18. Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
    19. Dominikus Noll, 2014. "Convergence of Non-smooth Descent Methods Using the Kurdyka–Łojasiewicz Inequality," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 553-572, February.
    20. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:85:y:2023:i:1:d:10.1007_s10589-023-00451-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.