IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v81y2022i2d10.1007_s10589-021-00334-y.html
   My bibliography  Save this article

A general variable neighborhood search for the cyclic antibandwidth problem

Author

Listed:
  • Sergio Cavero

    (Universidad Rey Juan Carlos)

  • Eduardo G. Pardo

    (Universidad Rey Juan Carlos)

  • Abraham Duarte

    (Universidad Rey Juan Carlos)

Abstract

Graph Layout Problems refer to a family of optimization problems where the aim is to assign the vertices of an input graph to the vertices of a structured host graph, optimizing a certain objective function. In this paper, we tackle one of these problems, named Cyclic Antibandwidth Problem, where the objective is to maximize the minimum distance of all adjacent vertices, computed in a cycle host graph. Specifically, we propose a General Variable Neighborhood Search which combines an efficient Variable Neighborhood Descent with a novel destruction–reconstruction shaking procedure. Additionally, our proposal takes advantage of two new exploration strategies for this problem: a criterion for breaking the tie of solutions with the same objective function and an efficient evaluation of neighboring solutions. Furthermore, two new neighborhood reduction strategies are proposed. We conduct a thorough computational experience by comparing the algorithm proposed with the current state-of-the-art methods over a set of previously reported instances. The associated results show the merit of the introduced algorithm, emerging as the best performance method in those instances where the optima are unknown. These results are further confirmed with nonparametric statistical tests.

Suggested Citation

  • Sergio Cavero & Eduardo G. Pardo & Abraham Duarte, 2022. "A general variable neighborhood search for the cyclic antibandwidth problem," Computational Optimization and Applications, Springer, vol. 81(2), pages 657-687, March.
  • Handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00334-y
    DOI: 10.1007/s10589-021-00334-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00334-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00334-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Hansen & Nenad Mladenović & Raca Todosijević & Saïd Hanafi, 2017. "Variable neighborhood search: basics and variants," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 423-454, September.
    2. Rodriguez-Tello, Eduardo & Lardeux, Frédéric & Duarte, Abraham & Narvaez-Teran, Valentina, 2019. "Alternative evaluation functions for the cyclic bandwidth sum problem," European Journal of Operational Research, Elsevier, vol. 273(3), pages 904-919.
    3. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    4. Rafael Martí & Juan-José Pantrigo & Abraham Duarte & Vicente Campos & Fred Glover, 2011. "Scatter Search and Path Relinking : A Tutorial on the Linear Arrangement Problem," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 2(2), pages 1-21, April.
    5. Pallavi Jain & Kamal Srivastava & Gur Saran, 2016. "Minimizing cyclic cutwidth of graphs using a memetic algorithm," Journal of Heuristics, Springer, vol. 22(6), pages 815-848, December.
    6. Pinana, Estefania & Plana, Isaac & Campos, Vicente & Marti, Rafael, 2004. "GRASP and path relinking for the matrix bandwidth minimization," European Journal of Operational Research, Elsevier, vol. 153(1), pages 200-210, February.
    7. Marti, Rafael & Laguna, Manuel & Glover, Fred & Campos, Vicente, 2001. "Reducing the bandwidth of a sparse matrix with tabu search," European Journal of Operational Research, Elsevier, vol. 135(2), pages 450-459, December.
    8. Eduardo G. Pardo & Mauricio Soto & Christopher Thraves, 2015. "Embedding signed graphs in the line," Journal of Combinatorial Optimization, Springer, vol. 29(2), pages 451-471, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavero, Sergio & Pardo, Eduardo G. & Duarte, Abraham, 2023. "Efficient iterated greedy for the two-dimensional bandwidth minimization problem," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1126-1139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrooz Koohestani & Riccardo Poli, 2015. "Addressing the envelope reduction of sparse matrices using a genetic programming system," Computational Optimization and Applications, Springer, vol. 60(3), pages 789-814, April.
    2. Eduardo G. Pardo & Antonio García-Sánchez & Marc Sevaux & Abraham Duarte, 2020. "Basic variable neighborhood search for the minimum sitting arrangement problem," Journal of Heuristics, Springer, vol. 26(2), pages 249-268, April.
    3. Rodriguez-Tello, Eduardo & Hao, Jin-Kao & Torres-Jimenez, Jose, 2008. "An improved simulated annealing algorithm for bandwidth minimization," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1319-1335, March.
    4. Michele Samorani & Manuel Laguna, 2012. "Data-Mining-Driven Neighborhood Search," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 210-227, May.
    5. Lim, Andrew & Rodrigues, Brian & Xiao, Fei, 2006. "Heuristics for matrix bandwidth reduction," European Journal of Operational Research, Elsevier, vol. 174(1), pages 69-91, October.
    6. Vicente Campos & Estefanía Piñana & Rafael Martí, 2011. "Adaptive memory programming for matrix bandwidth minimization," Annals of Operations Research, Springer, vol. 183(1), pages 7-23, March.
    7. Mladenovic, Nenad & Urosevic, Dragan & Pérez-Brito, Dionisio & García-González, Carlos G., 2010. "Variable neighbourhood search for bandwidth reduction," European Journal of Operational Research, Elsevier, vol. 200(1), pages 14-27, January.
    8. Marti, Rafael & Campos, Vicente & Pinana, Estefania, 2008. "A branch and bound algorithm for the matrix bandwidth minimization," European Journal of Operational Research, Elsevier, vol. 186(2), pages 513-528, April.
    9. Santos, Vinícius Gandra Martins & Carvalho, Marco Antonio Moreira de, 2021. "Tailored heuristics in adaptive large neighborhood search applied to the cutwidth minimization problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1056-1066.
    10. Wu, Song & Yang, Wei & Hanafi, Saïd & Wilbaut, Christophe & Wang, Yang, 2024. "Iterated local search with ejection chains for the space-free multi-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 873-886.
    11. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    12. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    13. Carolina G. Marcelino & João V. C. Avancini & Carla A. D. M. Delgado & Elizabeth F. Wanner & Silvia Jiménez-Fernández & Sancho Salcedo-Sanz, 2021. "Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    14. Ivorra, Benjamin & Mohammadi, Bijan & Manuel Ramos, Angel, 2015. "A multi-layer line search method to improve the initialization of optimization algorithms," European Journal of Operational Research, Elsevier, vol. 247(3), pages 711-720.
    15. Marti, Rafael, 2006. "Scatter Search--Wellsprings and Challenges," European Journal of Operational Research, Elsevier, vol. 169(2), pages 351-358, March.
    16. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
    17. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    18. Ofer M. Shir & Xi. Xing & Herschel. Rabitz, 2021. "Multi-level evolution strategies for high-resolution black-box control," Journal of Heuristics, Springer, vol. 27(6), pages 1021-1055, December.
    19. Kallestad, Jakob & Hasibi, Ramin & Hemmati, Ahmad & Sörensen, Kenneth, 2023. "A general deep reinforcement learning hyperheuristic framework for solving combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 309(1), pages 446-468.
    20. Weikang Fang & Zailin Guan & Peiyue Su & Dan Luo & Linshan Ding & Lei Yue, 2022. "Multi-Objective Material Logistics Planning with Discrete Split Deliveries Using a Hybrid NSGA-II Algorithm," Mathematics, MDPI, vol. 10(16), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00334-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.