IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v80y2021i2d10.1007_s10589-021-00309-z.html
   My bibliography  Save this article

The selection of the optimal parameter in the modulus-based matrix splitting algorithm for linear complementarity problems

Author

Listed:
  • Zhizhi Li

    (Shenzhen University
    University of Chinese Academy of Sciences)

  • Huai Zhang

    (University of Chinese Academy of Sciences)

  • Le Ou-Yang

    (Shenzhen University
    Shenzhen Institute of Artificial Intelligence and Robotics for Society)

Abstract

The modulus-based matrix splitting (MMS) algorithm is effective to solve linear complementarity problems (Bai in Numer Linear Algebra Appl 17: 917–933, 2010). This algorithm is parameter dependent, and previous studies mainly focus on giving the convergence interval of the iteration parameter. Yet the specific selection approach of the optimal parameter has not been systematically studied due to the nonlinearity of the algorithm. In this work, we first propose a novel and simple strategy for obtaining the optimal parameter of the MMS algorithm by merely solving two quadratic equations in each iteration. Further, we figure out the interval of optimal parameter which is iteration independent and give a practical choice of optimal parameter to avoid iteration-based computations. Compared with the experimental optimal parameter, the numerical results from three problems, including the Signorini problem of the Laplacian, show the feasibility, effectiveness and efficiency of the proposed strategy.

Suggested Citation

  • Zhizhi Li & Huai Zhang & Le Ou-Yang, 2021. "The selection of the optimal parameter in the modulus-based matrix splitting algorithm for linear complementarity problems," Computational Optimization and Applications, Springer, vol. 80(2), pages 617-638, November.
  • Handle: RePEc:spr:coopap:v:80:y:2021:i:2:d:10.1007_s10589-021-00309-z
    DOI: 10.1007/s10589-021-00309-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00309-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00309-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Baolian & Zheng, Hua & Li, Wen & Peng, Xiaofei, 2018. "The relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems of positive definite matrices," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 349-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Hua & Vong, Seakweng & Liu, Ling, 2019. "A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 396-405.
    2. Zheng, Hua & Vong, Seakweng, 2021. "On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Hua Zheng & Ling Liu, 2019. "The Sign-Based Methods for Solving a Class of Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 480-499, February.
    4. Zhang, Xu & Peng, Zheng, 2020. "A modulus-based nonmonotone line search method for nonlinear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:80:y:2021:i:2:d:10.1007_s10589-021-00309-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.